首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection.  相似文献   

2.
The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.  相似文献   

3.
Processing and presentation of vaccine antigens by professional antigen-presenting cells (APCs) is of great importance for the efficient induction of protective immunity. We analyzed whether the efficacy of an adenovirus-based retroviral vaccine can be enhanced by coadministration of adenovirus-encoded chemokines that attract and stimulate APCs. In the Friend retrovirus (FV) mouse model we coexpressed CCL3, CCL20, CCL21, or CXCL14 from adenoviral vectors, together with FV Gag and Env antigens, and then analyzed immune responses and protection from pathogenic FV infection. Although most tested chemokines did not improve protection against FV challenge, mice that received adenoviral vectors encoding CCL3 together with FV antigens showed significantly better control over viral loads and FV-induced disease than mice immunized with the viral antigens only. Improved protection correlated with enhanced virus-specific CD4+ T cell responses and higher neutralizing antibody titers. To apply these results to an HIV vaccine, mice were immunized with adenoviral vectors encoding the HIV antigens Env and Gag-Pol and coadministered vectors encoding CCL3. Again, this combination vaccine induced higher virus-specific antibody titers and CD4+ T cell responses than did the HIV antigens alone. These results indicate that coexpression of the chemokine CCL3 by adenovirus-based vectors may be a promising tool to improve antiretroviral vaccination strategies.  相似文献   

4.
5.
Most HIV-1 infections are thought to occur at mucosal surfaces during sexual contact. It has been hypothesized that vaccines delivered at mucosal surfaces may mediate better protection against HIV-1 than vaccines that are delivered systemically. To test this, rhesus macaques were vaccinated by intramuscular (i.m.) or intravaginal (ivag.) routes with helper-dependent adenoviral (HD-Ad) vectors expressing HIV-1 envelope. Macaques were first immunized intranasally with species C Ad serotype 5 (Ad5) prior to serotype-switching with species C HD-Ad6, Ad1, Ad5, and Ad2 vectors expressing env followed by rectal challenge with CCR5-tropic SHIV-SF162P3. Vaccination by the systemic route generated stronger systemic CD8 T cell responses in PBMC, but weaker mucosal responses. Conversely, mucosal immunization generated stronger CD4 T cell central memory (Tcm) responses in the colon. Intramuscular immunization generated higher levels of env-binding antibodies, but neither produced neutralizing or cytotoxic antibodies. After mucosal SHIV challenge, both groups controlled SHIV better than control animals. However, more animals in the ivag. group had lower viral set points than in in the i.m. group. These data suggest mucosal vaccination may have improve protection against sexually-transmitted HIV. These data also demonstrate that helper-dependent Ad vaccines can mediate robust vaccine responses in the face of prior immunity to Ad5 and during four rounds of adenovirus vaccination.  相似文献   

6.
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4+ T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.Adenoviruses have been a focus of interest as vaccine vectors for more than a decade and have been tested in various preclinical and clinical studies for vaccination against viral and bacterial infections (reviewed in reference 38). This interest is based on the ability of adenoviral vectors to induce high antibody titers and robust cytotoxic T-lymphocyte (CTL) responses and on the high immunogenicity of the vector, which might have an adjuvant effect on vaccination (17). Adenoviral vectors have also been extensively evaluated for immunization against HIV (reviewed in reference 1), where they were used either alone or in combination with plasmid DNA or protein in prime-boost immunizations. However, vaccination with adenoviral vectors against HIV showed no effectiveness in a large phase IIb study (4), but it is conceivable that the observed lack of effectiveness was due to the choice of vaccine antigen rather than the vector itself, as the vaccine relied exclusively on the induction of CTL responses, and the outcome was unexpected given previous results from studies in nonhuman primates (33, 42). The findings of the phase IIb study brought about a shift of focus from the CTL response to a more balanced immune response, including neutralizing antibodies, that is now expected to be necessary for protection from HIV infection.Apart from adenoviral vectors that encode vaccine antigens, there have also been approaches to modify adenoviral capsid proteins to include antigenic epitopes. These were mostly inserted into external loops of the hexon protein (5, 22, 25, 26, 43), which is the main component of the adenovirus capsid, but also other components of the capsid, such as fiber, protein IX, and penton base, have been evaluated (22). These studies showed that incorporation of single epitopes into capsid proteins of adenovirus leads to induction of antibody and CD4+ T-cell responses, suggesting that incorporation of epitopes into the adenovirus capsid is a useful tool for epitope-based vaccination.Fusion of a polylysine sequence or an arginine-glycine-aspartic acid motif to adenovirus pIX has been shown to be a tool for redirection of adenovirus tropism to heparan sulfate and αvβ integrins, respectively (9, 41). By fusing green fluorescent protein and luciferase to the C terminus of pIX, it was shown that relatively large proteins can be displayed on the adenovirus capsid while maintaining the protein''s conformation and function as well as virion integrity (24, 28).Here we describe a novel vaccination approach that combines genetic and protein vaccination by using adenoviral vectors not only as gene expression vectors but also as nanoparticle carriers for a vaccine antigen to improve the vaccination efficiency through enhanced induction of antibodies. Display of the vaccine antigen on the adenovirus capsid was achieved by fusion of the antigen to the C terminus of the adenovirus capsid protein pIX. It was shown before that the presentation of antigens in ordered arrays leads to improved antibody responses by cross-linking of B-cell receptors (13). As the adenoviral capsid is highly structured, we hypothesized that fusion to pIX would result in an ordered display of the antigen, presumably facilitating antibody induction.We evaluated this vaccine approach using the Friend virus (FV) infection model. FV is an immunosuppressive retroviral complex that consists of Friend murine leukemia virus (F-MuLV) and the replication-deficient, F-MuLV-dependent spleen focus-forming virus. FV infection of susceptible mice induces rapid polyclonal erythroblast proliferation, which leads to splenic enlargement and erythroleukemia and takes a lethal course also in adult mice (14). Protection from FV infection has been shown to require complex immune responses involving antibodies as well as CD4+ and CD8+ T cells (7). FV is regarded as a useful retrovirus infection model because basic requirements for vaccine protection seem to be similar for FV and HIV infection (8). We demonstrated previously that the FV model is suitable to evaluate and improve adenoviral vectors for antiretroviral vaccination (2), as we showed that a heterologous prime-boost vaccination with adenovirus type 5 (Ad5) and fiber chimeric Ad5F35 vectors led to better protection from FV infection than homologous vaccination, which correlated with improved induction of neutralizing antibodies.For vaccination with expression/display vectors against FV we constructed a fusion protein of the adenoviral capsid protein pIX and the F-MuLV envelope protein gp70 and produced adenoviral vectors expressing the pIX-gp70 fusion protein, which was incorporated into the viral capsid. We vaccinated FV-susceptible CB6F1 hybrid mice with antigen expression/display vectors or with conventional antigen-expressing adenoviral vectors and analyzed the protection conferred by these two vaccines. Having demonstrated that the expression/display vector leads to better protection of mice from FV challenge, we constructed a panel of expression/display vectors displaying different fusion proteins containing F-MuLV Env or Gag in order to elucidate the underlying immunological mechanisms of the improved protection conferred by the adenoviral expression/display vectors.  相似文献   

7.
There is no licensed human vaccine currently available for Rift Valley Fever Virus (RVFV), a Category A high priority pathogen and a serious zoonotic threat. While neutralizing antibodies targeting the viral glycoproteins are protective, they appear late in the course of infection, and may not be induced in time to prevent a natural or bioterrorism-induced outbreak. Here we examined the immunogenicity of RVFV nucleocapsid (N) protein as a CD8+ T cell antigen with the potential for inducing rapid protection after vaccination. HLA-A*0201 (A2)-restricted epitopic determinants were identified with N-specific CD8+ T cells from eight healthy donors that were primed with dendritic cells transduced to express N, and subsequently expanded in vitro by weekly re-stimulations with monocytes pulsed with 59 15mer overlapping peptides (OLPs) across N. Two immunodominant epitopes, VT9 (VLSEWLPVT, N121–129) and IL9 (ILDAHSLYL, N165–173), were defined. VT9- and IL9-specific CD8+ T cells identified by tetramer staining were cytotoxic and polyfunctional, characteristics deemed important for viral control in vivo. These peptides induced specific CD8+ T cell responses in A2-transgenic mice, and more importantly, potent N-specific CD8+ T cell reactivities, including VT9- and IL9-specific ones, were mounted by mice after a booster vaccination with the live attenuated RVF MP-12. Our data suggest that the RVFV N protein is a potent human T cell immunogen capable of eliciting broad, immunodominant CD8+ T cell responses that are potentially protective. Understanding the immune responses to the nucleocapsid is central to the design of an effective RVFV vaccine irrespective of whether this viral protein is effective as a stand-alone immunogen or only in combination with other RVFV antigens.  相似文献   

8.
The immune correlate of host resistance induced by reinfection of Trichinella spiralis remains unclear. In this study, we investigated immune correlates between the resistance and serum IgG antibody level, CD23+ IgM+ B cells, and eosinophil responses induced by T. spiralis reinfection. Mice were primarily infected with 10 or 100 T. spiralis larvae (10 TS, 100 TS), respectively, and after 4 weeks, they were challenge infected with 100 T. spiralis larvae (10–100 TS, 100-100 TS). Upon challenge infections, 10–100 TS mice induced significantly higher levels of T. spiralis-specific total IgG antibody responses in sera and antibody secreting cell responses in spleens compared to 100-100 TS mice, resulting in significantly reduced worm burdens in 10–100 TS mice (60% and 70% reductions for adult and larvae, respectively). Higher levels of eosinophils were found in mice primarily infected with 10 TS compared to those of 100 TS at week 8 upon challenge. CD23+ IgM+ B cells were found to be increased significantly in mice primarily infected with 10 TS. These results indicate that primary infection of 10 larvae of T. spiralis, rather than 100 larvae, induces significant resistance against reinfection which closely correlated with T. spiralis-specific IgG, eosinophil, and CD23+ IgM+ B cell responses.  相似文献   

9.
Yellow fever virus (YFV) can induce acute, life-threatening disease that is a significant health burden in areas where yellow fever is endemic, but it is preventable through vaccination. The live attenuated 17D YFV strain induces responses characterized by neutralizing antibodies and strong T cell responses. This vaccine provides an excellent model for studying human immunity. While several studies have characterized YFV-specific antibody and CD8+ T cell responses, less is known about YFV-specific CD4+ T cells. Here we characterize the epitope specificity, functional attributes, and dynamics of YFV-specific T cell responses in vaccinated subjects by investigating peripheral blood mononuclear cells by using HLA-DR tetramers. A total of 112 epitopes restricted by seven common HLA-DRB1 alleles were identified. Epitopes were present within all YFV proteins, but the capsid, envelope, NS2a, and NS3 proteins had the highest epitope density. Antibody blocking demonstrated that the majority of YFV-specific T cells were HLA-DR restricted. Therefore, CD4+ T cell responses could be effectively characterized with HLA-DR tetramers. Ex vivo tetramer analysis revealed that YFV-specific T cells persisted at frequencies ranging from 0 to 100 cells per million that are detectable years after vaccination. Longitudinal analysis indicated that YFV-specific CD4+ T cells reached peak frequencies, often exceeding 250 cells per million, approximately 2 weeks after vaccination. As frequencies subsequently declined, YFV-specific cells regained CCR7 expression, indicating a shift from effector to central memory. Cells were typically CXCR3 positive, suggesting Th1 polarization, and produced gamma interferon and other cytokines after reactivation in vitro. Therefore, YFV elicits robust early effector CD4+ T cell responses that contract, forming a detectable memory population.  相似文献   

10.
CD8+ T cells may contribute to vaccines for respiratory syncytial virus (RSV). Compared to CD8+ T cells responding to RSV infection, vaccine-elicited anti-RSV CD8+ T cells are less well defined. We used a peptide vaccine to test the hypothesis that vaccine-elicited RSV-specific CD8+ T cells are protective against RSV pathogenesis. BALB/c mice were treated with a mixture (previously termed TriVax) of an M282-90 peptide representing an immunodominant CD8 epitope, the Toll-like receptor (TLR) agonist poly(I·C), and a costimulatory anti-CD40 antibody. TriVax vaccination induced potent effector anti-RSV CD8+ cytotoxic T lymphocytes (CTL). Mice were challenged with RSV strain A2-line19F, a model of RSV pathogenesis leading to airway mucin expression. Mice were protected against RSV infection and against RSV-induced airway mucin expression and cellular lung inflammation when challenged 6 days after vaccination. Compared to A2-line19F infection alone, TriVax vaccination followed by challenge resulted in effector CD8+ T cells with greater cytokine expression and the more rapid appearance of RSV-specific CD8+ T cells in the lung. When challenged 42 days after TriVax vaccination, memory CD8+ T cells were elicited with RSV-specific tetramer responses equivalent to TriVax-induced effector CD8+ T cells. These memory CD8+ T cells had lower cytokine expression than effector CD8+ T cells, and protection against A2-line19F was partial during the memory phase. We found that vaccine-elicited effector anti-RSV CD8+ T cells protected mice against RSV infection and pathogenesis, and waning protection correlated with reduced CD8+ T cell cytokine expression.  相似文献   

11.
Standard cancer therapies, particularly those involving chemotherapy, are in need of modifications that both reduce short-term and long-term side effects as well as improve the overall survival of cancer patients. Here we show that combining low-dose chemotherapy with a therapeutic vaccination using an adenovirus encoding a model tumor-associated antigen, ovalbumin (Ad5-OVA), had a synergistic impact on survival in tumor-challenged mice. Mice that received the combinatorial treatment of Ad5-OVA plus low-dose 5-fluorouracil (5-FU) had a 95% survival rate compared to 7% and 30% survival rates for Ad5-OVA alone and 5-FU alone respectively. The presence of 5-FU enhanced the levels of OVA-specific CD8+ T lymphocytes in the spleens and draining lymph nodes of Ad5-OVA-treated mice, a phenomenon that was dependent on the mice having been tumor-challenged. Thus 5-FU may have enhanced survival of Ad5-OVA-treated mice by enhancing the tumor-specific immune response combined with eliminating tumor bulk. We also investigated the possibility that the observed therapeutic benefit may have been derived from the capacity of 5-FU to deplete MDSC populations. The findings presented here promote the concept of combining adenoviral cancer vaccines with low-dose chemotherapy.  相似文献   

12.
The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers.  相似文献   

13.
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.  相似文献   

14.
BACKGROUND: The high affinity Fcgamma receptor I (FcgammaRI; aka CD64) is expressed by dendritic cells (DC) and antigens targeted to this receptor elicit enhanced immune responses. This study was designed to test the hypothesis that targeting an adenoviral (Ad) vector to FcgammaRI would lead to enhanced transduction of DC and an improved immune response to vector-encoded antigens. METHODS: A bispecific adaptor molecule consisting of a trimeric adenovirus fiber-binding moiety fused to a single-chain antibody specific for human FcgammaRI was generated. Transduction of cultured cells, including human DC, by the FcgammaRI-targeted Ad was then evaluated using reporter genes (GFP, luciferase). Immunophenotypic and functional characteristics of vector-transduced DC were also measured by flow cytometry, cytokine ELISA and mixed lymphocyte reaction (MLR); antigen-specific stimulation of autologous CD8(+) T cells was evaluated using vectors encoding cytomegalovirus (CMV) pp65. RESULTS: FcgammaRI-targeted Ad transduced primary DC with 10-15-fold greater efficiency than unmodified Ad or Ad vectors complexed to an adaptor protein that targeted an irrelevant receptor. However, FcgammaRI-targeting had no effect of Ad-induced activation of DC, as measured by cytokine release or expression of cell surface activation markers. Finally, FcgammaRI-targeting of vectors encoding CMV pp65 resulted in an increase in the activation of antigen-specific autologous human CD8(+) T cells. CONCLUSIONS: FcgammaRI-targeting significantly enhances the efficiency of Ad vector-mediated gene transfer in primary human DC, and results in an improved immune response to a vector-encoded antigen.  相似文献   

15.

Background

Cooperation of CD4+ T helper cells with specific B cells is crucial for protective vaccination against pathogens by inducing long-lived neutralizing antibody responses. During infection with persistence-prone viruses, prolonged virus replication correlates with low neutralizing antibody responses. We recently described that a viral mutant of lymphocytic choriomeningitis virus (LCMV), which lacks a T helper epitope, counterintuitively induced an enhanced protective antibody response. Likewise, partial depletion of the CD4+ T cell compartment by using anti-CD4 antibodies enhanced protective antibodies.

Principal Findings

Here we have developed a protocol to selectively reduce the CD4+ T cell response against viral CD4+ T cell epitopes. We demonstrate that in vivo treatment with LCMV-derived MHC-II peptides induced non-responsiveness of specific CD4+ T cells without affecting CD4+ T cell reactivity towards other antigens. This was associated with accelerated virus-specific neutralizing IgG-antibody responses. In contrast to a complete absence of CD4+ T cell help, tolerisation did not impair CD8+ T cell responses.

Conclusions

This result reveals a novel “negative vaccination” strategy where specific CD4+ T cell unresponsiveness may be used to enhance the delayed protective antibody responses in chronic virus infections.  相似文献   

16.
E1-deleted adenoviral recombinants most commonly based on the human serotype 5 (AdHu5) have been shown thus far to induce unsurpassed transgene product-specific CD8(+) T cell responses. A large percentage of the adult human population carries neutralizing Abs due to natural exposures to AdHu5 virus. To circumvent reduction of the efficacy of adenovirus (Ad) vector-based vaccines by neutralizing Abs to the vaccine carrier, we developed E1-deleted adenoviral vaccine carriers based on simian serotypes. One of these carriers, termed AdC68, expressing a codon-optimized truncated form of gag of HIV-1 was shown previously to induce a potent transgene product-specific CD8(+) T cell response in mice. We constructed a second chimpanzee adenovirus vaccine vector, termed AdC6, also expressing the truncated gag of HIV-1. This vector, which belongs to a different serotype than the AdC68 virus, induces high frequencies of gag-specific CD8(+) T cells in mice including those pre-exposed to AdHu5 virus. Generation of an additional E1-deleted adenoviral vector of chimpanzee origin allows for sequential booster immunizations with heterologous vaccine carriers. In this study, we show that such heterologous prime boost regimens based on E1-deleted adenoviral vectors of different serotypes expressing the same transgene product are highly efficient in increasing the transgene product-specific CD8(+) T cell response. They are equivalent to sequential vaccinations with an E1-deleted Ad vector followed by booster immunization with a poxvirus vector and they surpass regimens based on DNA vaccine prime followed by a recombinant adenoviral vector boost.  相似文献   

17.
The central role of CD4+ T cells in regulation of adenovirus vector-mediated immune responses has been documented previously in murine models. We analyzed the effects of a nondepleting mAb to human CD4 (CD4 mAb; Clenoliximab) on immune functions following intratracheal administration of adenoviral vectors in murine CD4-deficient mice (muCD4KO) expressing a human CD4 transgene (HuCD4 mice). Treatment of HuCD4 mice with Clenoliximab inhibited both cell-mediated and humoral immune responses to adenoviral Ags. Chronic treatment of HuCD4 mice with Clenoliximab permitted successful readministration of adenoviral vectors at least four times. The ability to readminister these vectors is associated with marked suppression of neutralizing Ab responses to viral capsid proteins. Clenoliximab also inhibited CTL and prolonged expression of the transgene. T or B cell responses to adenovirus did not emerge after the effects of a short course of Clenoliximab diminished. These data illustrate the potential utility of a nondepleting CD4 Ab in facilitating gene therapy using adenoviral vectors.  相似文献   

18.
The development of an effective malaria vaccine is a high global health priority. Vaccine vectors based on adenovirus type 5 are capable of generating robust and protective T cell and antibody responses in animal models and are currently being evaluated in clinical trials for HIV and malaria. They appear to be more effective in terms of inducing antigen-specific immune responses as compared with non-Ad5 serotype vectors. However, the high prevalence of neutralizing antibodies to Ad5 in the human population, particularly in the developing world, has the potential to limit the effectiveness of Ad5-based vaccines. We have generated novel Ad5-based vectors that precisely replace the hexon hypervariable regions with those derived from Ad43, a subgroup D serotype with low prevalence of neutralizing antibody in humans. We have demonstrated that these hexon-modified adenovectors are not neutralized efficiently by Ad5 neutralizing antibodies in vitro using sera from mice, rabbits and human volunteers. We have also generated hexon-modified adenovectors that express a rodent malaria parasite antigen, PyCSP, and demonstrated that they are as immunogenic as an unmodified vector. Furthermore, in contrast to the unmodified vector, the hexon-modified adenovectors induced robust T cell responses in mice with high levels of Ad5 neutralizing antibody. We also show that the hexon-modified vector can be combined with unmodified Ad5 vector in prime-boost regimens to induce protective responses in mice. Our data establish that these hexon-modified vectors are highly immunogenic even in the presence of pre-existing anti-adenovirus antibodies. These hexon-modified adenovectors may have advantages in sub-Saharan Africa where there is a high prevalence of Ad5 neutralizing antibody in the population.  相似文献   

19.

Background

Adenoviral (Ad) vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8+ T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8+ T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone.

Methodology/Principal Findings

Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5)-specific CD8+ T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8+ T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8+ T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb) seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8+ T-cells.

Conclusions

These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8+ T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1].

Trial Registration

ClinicalTrials.gov NCT00849680 [NCT00849680]  相似文献   

20.
For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号