首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.  相似文献   

2.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

3.
Cystic fibrosis (CF) is caused by defects in the CF transmembrane conductance regulator (CFTR) that functions as a chloride channel in epithelial cells. The most common cause of CF is the abnormal trafficking of CFTR mutants. Therefore, understanding the cellular machineries that transit CFTR from the endoplasmic reticulum to the plasma membrane (PM) is important. The coat protein complex I (COPI) has been implicated in the anterograde and retrograde transport of proteins and lipids between the endoplasmic reticulum and the Golgi. Here, we investigated the role of COPI in CFTR trafficking. Blocking COPI recruitment to membranes by expressing an inactive form of the GBF1 guanine nucleotide exchange factor for ADP-ribosylation factor inhibits CFTR trafficking to the PM. Similarly, inhibiting COPI dissociation from membranes by expressing a constitutively active ADP-ribosylation factor 1 mutant arrests CFTR within disrupted Golgi elements. To definitively explore the relationship between COPI and CFTR in epithelial cells, we depleted beta-COP from the human colonic epithelial cell HT-29Cl.19A using small interfering RNA. Beta-COP depletion did not affect CFTR synthesis but impaired its trafficking to the PM. The arrest occurred pre-Golgi as shown by reduced level of glycosylation. Importantly, decreased trafficking of CFTR had a functional consequence as cells depleted of beta-COP showed decreased cAMP-activated chloride currents. To explore the mechanism of COPI action in CFTR traffic we tested whether CFTR was COPI cargo. We discovered that the alpha-, beta-, and gamma-subunits of COPI co-immunoprecipitated with CFTR. Our results indicate that the COPI complex plays a critical role in CFTR trafficking to the PM.  相似文献   

4.
The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane?lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells.?Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid sorting by ceramide structure and provide a molecular explanation for the diversity?and specificity of retrograde trafficking by CT in?host cells.  相似文献   

5.
Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B''s repertoire of transport functions.  相似文献   

6.
7.
Niemann-Pick type C (NPC) is a disease that affects intracellular cholesterol-trafficking pathways. By cloning the hamster ortholog of NPC1, we identified the molecular lesions in two independently isolated Chinese hamster ovary cell mutants, CT60 and CT43. Both mutants lead to premature translational terminations of the NPC1 protein. Transfecting hamster NPC1 cDNA complemented the defects of the mutants. Investigation of the CT mutants, their parental cells, and an NPC1-stable transfectant allow us to present evidence that NPC1 is involved in a post-plasma membrane cholesterol-trafficking pathway. We found that the initial movement of low density lipoprotein (LDL)-derived cholesterol to the plasma membrane (PM) did not require NPC1. After reaching the PM and subsequent internalization, however, cholesterol trafficking back to the PM did involve NPC1. Both LDL-derived cholesterol and cholesterol originating from the PM accumulated in a dense, intracellular compartment in the CT mutants. Cholesterol movement from this compartment to the PM or endoplasmic reticulum was defective in the CT mutants. Our results functionally distinguish the dense, intracellular compartment from the early endocytic hydrolytic organelle and imply that NPC1 is involved in sorting cholesterol from the intracellular compartment back to the PM or to the endoplasmic reticulum.  相似文献   

8.
9.
Host–pathogen interactions are important model systems for understanding fundamental cell biological processes. In this study, we describe a cholesterol-trafficking pathway induced by the adenovirus membrane protein RID-α that also subverts the cellular autophagy pathway during early stages of an acute infection. A palmitoylation-defective RID-α mutant deregulates cholesterol homeostasis and elicits lysosomal storage abnormalities similar to mutations associated with Niemann-Pick type C (NPC) disease. Wild-type RID-α rescues lipid-sorting defects in cells from patients with this disease by a mechanism involving a class III phosphatidylinositol-3-kinase. In contrast to NPC disease gene products that are localized to late endosomes/lysosomes, RID-α induces the accumulation of autophagy-like vesicles with a unique molecular composition. Ectopic RID-α regulates intracellular cholesterol trafficking at two distinct levels: the egress from endosomes and transport to the endoplasmic reticulum necessary for homeostatic gene regulation. However, RID-α also induces a novel cellular phenotype, suggesting that it activates an autonomous cholesterol regulatory mechanism distinct from NPC disease gene products.  相似文献   

10.
Niemann-Pick type C1 disease (NPC1) is an inherited neurovisceral lipid storage disorder, hallmarked by the intracellular accumulation of unesterified cholesterol and glycolipids in endocytic organelles. Cells acquire cholesterol through exogenous uptake and endogenous biosynthesis. NPC1 participation in the trafficking of LDL-derived cholesterol has been well studied; however, its role in the trafficking of endogenously synthesized cholesterol (endoCHOL) has received much less attention. Previously, using mutant Chinese hamster ovary cells, we showed that endoCHOL moves from the endoplasmic reticulum (ER) to the plasma membrane (PM) independent of NPC1. After arriving at the PM, it moves between the PM and internal compartments. The movement of endoCHOL from internal membranes back to the PM and the ER for esterification was shown to be defective in NPC1 cells. To test the generality of these findings, we have examined the trafficking of endoCHOL in four different physiologically relevant cell types isolated from wild-type, heterozygous, and homozygous BALB/c NPC1NIH mice. The results show that all NPC1 homozygous cell types (embryonic fibroblasts, peritoneal macrophages, hepatocytes, and cerebellar glial cells) exhibit partial trafficking defects, with macrophages and glial cells most prominently affected. Our findings suggest that endoCHOL may contribute significantly to the overall cholesterol accumulation observed in selective tissues affected by Niemann-Pick type C disease.  相似文献   

11.
The HIV protein Nef is thought to mediate immune evasion and promote viral persistence in part by down-regulating major histocompatibility complex class I protein (MHC-I or HLA-I) from the cell surface. Two different models have been proposed to explain this phenomenon as follows: 1) stimulation of MHC-I retrograde trafficking from and aberrant recycling to the plasma membrane, and 2) inhibition of anterograde trafficking of newly synthesized HLA-I from the endoplasmic reticulum to the plasma membrane. We show here that Nef simultaneously uses both mechanisms to down-regulate HLA-I in peripheral blood mononuclear cells or HeLa cells. Consistent with this, we found by using fluorescence correlation spectroscopy that a third of diffusing HLA-I at the endoplasmic reticulum, Golgi/trans-Golgi network, and the plasma membrane (PM) was associated with Nef. The binding of Nef was similarly avid for native HLA-I and recombinant HLA-I A2 at the PM. Nef binding to HLA-I at the PM was sensitive to specific inhibition of endocytosis. It was also attenuated by cyclodextrin disruption of PM lipid micro-domain architecture, a change that also retarded lateral diffusion and induced large clusters of HLA-I. In all, our data support a model for Nef down-regulation of HLA-I that involves both major trafficking itineraries and persistent protein-protein interactions throughout the cell.  相似文献   

12.
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface .  相似文献   

13.
Excess cellular cholesterol induces apoptosis in macrophages, an event likely to promote progression of atherosclerosis. The cellular mechanism of cholesterol-induced apoptosis is unknown but had previously been thought to involve the plasma membrane. Here we report that the unfolded protein response (UPR) in the endoplasmic reticulum is activated in cholesterol-loaded macrophages, resulting in expression of the cell death effector CHOP. Cholesterol loading depletes endoplasmic reticulum calcium stores, an event known to induce the UPR. Furthermore, endoplasmic reticulum calcium depletion, the UPR, caspase-3 activation and apoptosis are markedly inhibited by selective inhibition of cholesterol trafficking to the endoplasmic reticulum, and Chop-/- macrophages are protected from cholesterol-induced apoptosis. We propose that cholesterol trafficking to endoplasmic reticulum membranes, resulting in activation of the CHOP arm of the UPR, is the key signalling step in cholesterol-induced apoptosis in macrophages.  相似文献   

14.
TMEM41B and VMP1 are integral membrane proteins of the endoplasmic reticulum (ER) and regulate the formation of autophagosomes, lipid droplets (LDs), and lipoproteins. Recently, TMEM41B was identified as a crucial host factor for infection by all coronaviruses and flaviviruses. The molecular function of TMEM41B and VMP1, which belong to a large evolutionarily conserved family, remains elusive. Here, we show that TMEM41B and VMP1 are phospholipid scramblases whose deficiency impairs the normal cellular distribution of cholesterol and phosphatidylserine. Their mechanism of action on LD formation is likely to be different from that of seipin. Their role in maintaining cellular phosphatidylserine and cholesterol homeostasis may partially explain their requirement for viral infection. Our results suggest that the proper sorting and distribution of cellular lipids are essential for organelle biogenesis and viral infection.  相似文献   

15.
Niemann-Pick C1-like 1 protein (NPC1L1) is the putative intestinal sterol transporter and the molecular target of ezetimibe, a potent inhibitor of cholesterol absorption. To address the role of NPC1L1 in cholesterol trafficking in intestine, the regulation of cholesterol trafficking by ezetimibe was studied in the human intestinal cell line, CaCo-2. Ezetimibe caused only a modest decrease in the uptake of micellar cholesterol, but markedly prevented its esterification. Cholesterol trafficking from the plasma membrane to the endoplasmic reticulum was profoundly disrupted by ezetimibe without altering the trafficking of cholesterol from the endoplasmic reticulum to the plasma membrane. Cholesterol oxidase-accessible cholesterol at the apical membrane was increased by ezetimibe. Cholesterol synthesis was modestly increased. Although the amount of cholesteryl esters secreted at the basolateral membrane was markedly decreased by ezetimibe, the transport of lipids and the number of lipoprotein particles secreted were not altered. NPC1L1 gene and protein expression were decreased by sterol influx, whereas cholesterol depletion enhanced NPC1L1 gene and protein expression. These results suggest that NPC1L1 plays a role in cholesterol uptake and cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. Interfering with its function will profoundly decrease the amount of cholesterol transported into lymph.  相似文献   

16.
Iron is essential for most living organisms. The iron‐regulated transporter1 (IRT1) plays a major role in iron uptake in roots, and its trafficking from endoplasmic reticulum (ER) to plasma membrane (PM) is tightly coordinated with changes in iron environment. However, studies on the IRT1 response are limited. Here, we report that Malus xiaojinesis IRT1 (MxIRT1) associates with detergent‐resistant membranes (DRMs, a biochemical counterpart of PM microdomains), whereas the PM microdomains are known platforms for signal transduction in the PM. Depending on the shift of MxIRT1 from microdomains to homogeneous regions in PM, MxIRT1‐mediated iron absorption is activated by the cholesterol recognition/interaction amino acid consensus (CRAC) motif of MxIRT1. MxIRT1 initially associates with DRMs in ER via its transmembrane domain 1 (TMD1), and thus begins DRMs‐dependent intracellular trafficking. Subsequently, MxIRT1 is sequestered in COPII vesicles via the ER export signal sequence in MxIRT1. These studies suggest that iron homeostasis is influenced by the CRAC motif and TMD1 domain due to their determination of MxIRT1‐DRMs association.   相似文献   

17.
18.
Plasmalogens are a major sub-class of ethanolamine and choline phospholipids in which the sn-1 position has a long chain fatty alcohol attached through a vinyl ether bond. These phospholipids are proposed to play a role in membrane fusion-mediated events. In this study, we investigated the role of the ethanolamine plasmalogen plasmenylethanolamine (PlsEtn) in intracellular cholesterol transport in Chinese hamster ovary cell mutants NRel-4 and NZel-1, which have single gene defects in PlsEtn biosynthesis. We found that PlsEtn was essential for specific cholesterol transport pathways, those from the cell surface or endocytic compartments to acyl-CoA/cholesterol acyltransferase in the endoplasmic reticulum. The movement of cholesterol from the endoplasmic reticulum or endocytic compartments to the cell surface was normal in PlsEtn-deficient cells. Also, vesicle trafficking was normal in PlsEtn-deficient cells, as measured by fluid phase endocytosis and exocytosis, as was the movement of newly-synthesized proteins to the cell surface. The mutant cholesterol transport phenotype was due to the lack of PlsEtn, since it was corrected when NRel-4 cells were transfected with a cDNA encoding the missing enzyme or supplied with a metabolic intermediate that enters the PlsEtn biosynthetic pathway downstream of the defect. Future work must determine the precise role that plasmalogens have on cholesterol transport to the endoplasmic reticulum.  相似文献   

19.
A lysosomal storage disease (LSD) results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum–associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil—both US Food and Drug Administration–approved hypertension drugs—partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient–derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely α-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号