首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

2.
3.
Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic transepithelial migration. To uncover the structural basis of the complex formation, we report here the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal sequence of CXCR2 at 1.16 Å resolution. The structure reveals that the CXCR2 peptide binds to PDZ1 in an extended conformation with the last four residues making specific side chain interactions. Remarkably, comparison of the structure to previously studied PDZ1 domains has allowed the identification of PDZ1 ligand-specific interactions and the mechanisms that govern PDZ1 target selection diversities. In addition, we show that CXCR2 can bind both NHERF1 PDZ1 and PDZ2 in pulldown experiments, consistent with the observation that the peptide binding pockets of these two PDZ domains are highly structurally conserved. The results of this study therefore provide structural basis for the CXCR2-mediated neutrophilic migration and could have important clinical applications in the prevention and treatment of numerous neutrophil-dependent inflammatory disorders.  相似文献   

4.
沈燕  熊思东 《生命的化学》2001,21(5):355-356
基质衍生因子 1 (stromalderivedfactor 1 ,SDF1 )是CXC家族趋化蛋白 ,1 988年由日本学者Nishikawa等[1] 首先克隆发现 ,其受体为CXCR4,属G蛋白偶联受体家族。SDF1与CXCR4作用 ,构成SDF 1 CXCR4反应轴 ,转导特定的信号、介导不同的效应。过去认为 ,SDF1 CXCR4轴介导的效应主要包括参与胚胎、血管、心脏形成以及B细胞生成等生理过程 ,与炎症反应无关。近年来的研究报告显示SDF1 CXCR4轴在多种状态下发挥独特作用 :介导炎症细胞跨膜迁移、对T淋巴细胞增殖起共刺激…  相似文献   

5.
6.
Abstract

An off-lattice dynamic Monte Carlo (MC) method is used to investigate the conformational dynamics of chymotrypsin inhibitor 2 (CI2) and subtilisin in both free and complex forms over two time windows, referring to short and long time scales. The conformational dynamics of backbone bonds analysed from several independent trajectories reveal that: Both the inhibitor and the enzyme are restricted in their bond rotations, excluding a few bonds, upon binding; the effect being greatest for the loop regions, and for the inhibitor. A cooperativity in the near-neighbor bond rotations are observed on both time scales, whereas the cooperative rotations of the bonds far along the sequence appear only in the long time window, and the latter time window is where most of the interactions between the inhibitor and the enzyme are observed. Upon binding, the cooperatively rotating parts of the inhibitor and the enzyme are readjusted compared to their free forms, and new correlations appear. The binding loop, although it is the closest contact region, is not the only part of the inhibitor involved in the interactions with the enzyme. Loops 3 and 8 and the helices F and G in bound enzyme and the binding loop of the inhibitor contribute at the most to the collective motions of whole structure on the slow time scale and are apparently important for enzyme-inhibitor interactions and function. The results in general provide evidence for the contribution of the loops with cooperative motions to the extensive communication network of the complex.  相似文献   

7.
Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood. Here we show using in vitro imaging and binding assays that a fragment of the actin-binding protein caldesmon added to polymerizing actin increases the Arp2/3-mediated branching activity, whereas it has no effect on branch formation when binding to aged actin filaments. Because this caldesmon effect is shown to be independent of nucleotide hydrolysis and phosphate release from actin, our results suggest a mechanism by which caldesmon maintains newly polymerized actin in a distinct state that has a higher affinity for the Arp2/3 complex. Our data show that this new state does not affect the level of cooperativity of binding by Arp2/3 complex or its distribution on actin. This presents a novel regulatory mechanism by which caldesmon, and potentially other actin-binding proteins, regulates the interactions of actin with its binding partners.  相似文献   

8.
  1. Download : Download high-res image (671KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
The PDZ (PSD-95/Drosophila discs-large protein/zonula occludens protein) domain-containing proteins Na+/H+ exchanger regulatory factor 1 (NHERF1) and NHERF2 interact with the glutamate transporter GLAST. To characterize the roles of these NHERF proteins in the plasma membrane targeting of GLAST, we examined the interaction of green fluorescent protein (EGFP)-tagged GLAST with epitope-tagged NHERF proteins in human embryonic kidney (HEK) 293T cells. Co-expression of either NHERF protein increased the cell surface expression of EGFP-GLAST. Deletion of the C-terminal PDZ domain-binding motif caused an increase in EGFP-GLAST with immature endoglycosidase H-sensitive N-linked oligosaccharides, suggesting impaired exit of EGFP-GLAST from the endoplasmic reticulum (ER). Immunoprecipitation experiments revealed that NHERF1 predominantly bound EGFP-GLAST containing immature N-glycans, whereas NHERF2 co-precipitated EGFP-GLAST with mature N-glycans. Expression of a dominant-negative mutant of the GTPase Sar1 increased the interaction of EGFP-GLAST with NHERF1 in the ER. By contrast, immunofluorescence microscopy showed that NHERF2 co-localized with EGFP-GLAST in ER–Golgi intermediate compartments (ERGICs), at the plasma membrane and in early endosomes, but not in the ER. These results suggest that NHERF1 interacts with GLAST during ER export, while NHERF2 interacts with GLAST in the secretory pathway from the ERGIC to the plasma membrane, thereby modulating the cell surface expression of GLAST.  相似文献   

11.
12.
13.
14.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.  相似文献   

15.
Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain – the ‘C-tail’. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.  相似文献   

16.
The polyene macrolide antibiotic filipin is widely used as a probe for cholesterol in biological membranes. The filipin biosynthetic pathway of Streptomyces avermitilis contains two position-specific hydroxylases, C26-specific CYP105P1 and C1′-specific CYP105D6. In this study, we describe the three X-ray crystal structures of CYP105P1: the ligand-free wild-type (WT-free), 4-phenylimidazole-bound wild-type (WT-4PI), and ligand-free H72A mutant (H72A-free) forms. The BC loop region in the WT-free structure has a unique feature; the side chain of His72 within this region is ligated to the heme iron. On the other hand, this region is highly disordered and widely open in WT-4PI and H72A-free structures, respectively. Histidine ligation of wild-type CYP105P1 was not detectable in solution, and a type II spectral change was clearly observed when 4-phenylimidazole was titrated. The H72A mutant showed spectroscopic characteristics that were almost identical to those of the wild-type protein. In the H72A-free structure, there is a large pocket that is of the same size as the filipin molecule. The highly flexible feature of the BC loop region of CYP105P1 may be required to accept a large hydrophobic substrate.  相似文献   

17.
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na+/H+ exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号