首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over a thousand individual Fibronectin type III (FnIII) domain sequences, extracted from more than 60 different FnIII-dependent protein super-structures, were downloaded from curated database resources. Three regions of extreme sequence conservation within the well-characterized FnIII β-sandwich structure were respectively defined by near absolute conservation of a tryptophan (Trp) in β-strand-B, tyrosines (Tyr) in both β-strand-C and β-strand-F, and a leucine (Leu) residue in the unstructured region immediately preceding β-strand-F. Employing these four conserved landmarks, the entire FnIII sequence dataset was vertically registered to align the three conserved regions, and the cumulative distribution of all other amino acid functionality was determined and plotted relative to these landmark residues. Conserved aromatic sites were each found to be flanked by aliphatic residues that assure localization of these sites to the inaccessible hydrophobic interface between major sheet structures. Mapping the location of conserved aromatic sites in numerous PDB structures demonstrated the consistent pair-wise co-localization of the indole side-chain of the conserved strand-B Trp site to within 0.35 nm of the phenolic side-chain of the strand-C Tyr site located 8–14 amino acids distal. Likewise, the side-chain of the strand-F Tyr site co-localized to within 0.45 nm of the aliphatic side-chain of the conserved Leu that uniformly precedes it by six residues. While classic hydropathy-based theories would deem the “burying” of Tyr and Trp side-chains and/or their association with hydrophobic FnIII core residues thermodynamically unnecessary, alternative contributions of conserved Trp and Tyr residues, and particularly the role of the absolutely conserved tyrosine phenolic –OH in native FnIII structure–function are considered. A more global role for conserved FnIII aromaticity is also discussed in light of the aromatic conservation observed in other well-established protein families.  相似文献   

2.
The 39-kDa receptor-associated protein (RAP) is an intracellular glycoprotein that interacts with hitherto unknown sites in several members of the low-density-lipoprotein receptor gene family. Upon binding to these receptors, RAP inhibits all ligand interactions with the receptors. In the present study, the transglutaminase-catalyzed incorporation of radioactively labeled putrescine and a dansylated glutamine-containing peptide into human RAP has been studied. The results indicate the presence of both glutamine and lysine residues in RAP, accessible for transglutaminase cross-linking. Moreover, enzymatic digestion followed by sequence analysis of radiolabeled fractions demonstrated that Gln261 acts as the amine acceptor site. This residue is located in the third domain of RAP and is conserved among the RAP interspecies homologues. Insertion of a reporter group into the protein could prove useful to assess ligand/receptor interactions.  相似文献   

3.
Blue light-using flavin (BLUF) proteins form a subfamily of blue light photoreceptors, are found in many bacteria and algae, and are further classified according to their structures. For one type of BLUF-containing protein, e.g. PixD, the central axes of its two C-terminal α-helices are perpendicular to the β-sheet of its N-terminal BLUF domain. For another type, e.g. PapB, the central axes of its two C-terminal α-helices are parallel to its BLUF domain β-sheet. However, the functional significance of the different orientations with respect to phototransduction is not clear. For the study reported herein, we constructed a chimeric protein, Pix0522, containing the core of the PixD BLUF domain and the C-terminal region of PapB, including the two α-helices, and characterized its biochemical and spectroscopic properties. Fourier transform infrared spectroscopy detected similar light-induced conformational changes in the C-terminal α-helices of Pix0522 and PapB. Pix0522 interacts with and activates the PapB-interacting enzyme, PapA, demonstrating the functionality of Pix0522. These results provide direct evidence that the BLUF C-terminal α-helices function as an intermediary that accepts the flavin-sensed blue light signal and transmits it downstream during phototransduction.  相似文献   

4.
The type VI secretion system (T6SS) is a specialized macromolecular complex dedicated to the delivery of protein effectors into both eukaryotic and bacterial cells. The general mechanism of action of the T6SS is similar to the injection of DNA by contractile bacteriophages. The cytoplasmic portion of the T6SS is evolutionarily, structurally and functionally related to the phage tail complex. It is composed of an inner tube made of stacked Hcp hexameric rings, engulfed within a sheath and built on a baseplate. This sheath undergoes cycles of extension and contraction, and the current model proposes that the sheath contraction propels the inner tube toward the target cell for effector delivery. The sheath comprises two subunits: TssB and TssC that polymerize under an extended conformation. Here, we show that isolated TssB forms trimers, and we report the crystal structure of a C-terminal fragment of TssB. This fragment comprises a long helix followed by a helical hairpin that presents surface-exposed charged residues. Site-directed mutagenesis coupled to functional assay further showed that these charges are required for proper assembly of the sheath. Positioning of these residues in the extended T6SS sheath structure suggests that they may mediate contacts with the baseplate.  相似文献   

5.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   

6.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a...  相似文献   

7.
8.
Proteolysis of important regulatory proteins by the ubiquitin–proteosome pathway is a key aspect of cellular regulation in eukaryotes. Genetic studies in Arabidopsis indicate that response to auxin depends on the function of proteins in this pathway. The auxin transport inhibitor resistant 1 (TIR1) protein is part of a ubiquitin–protein–ligase complex (E3), known as SKP1 CDC53 F-boxTIR1 (SCFTIR1), that possibly directs ubiquitin-modification of protein regulators of the auxin response. In yeast, a similar E3 complex, SCFCDC4, is regulated by conjugation of the ubiquitin-related protein Rub1 to the Cdc53 protein. In Arabidopsis, the auxin-resistant1 (AXR1) gene encodes a subunit of the RUB1-activating enzyme, the first enzyme in the RUB-conjugation pathway. Loss of AXR1 results in loss of auxin response. These results suggest a model in which RUB1 modification regulates the activity of SCFTIR1, thereby directing the degradation of the repressors of the auxin response.  相似文献   

9.
Schoffman  Hanan  Keren  Nir 《Photosynthesis research》2019,141(3):343-353
Photosynthesis Research - The acclimation of cyanobacterial photosynthetic apparatus to iron deficiency is crucial for their performance under limiting conditions. In many cyanobacterial species,...  相似文献   

10.
CaVβ subunits are formed by a Src homology 3 domain and a guanylate kinase-like (GK) domain connected through a variable HOOK domain. Complete deletion of the Src homology 3 domain (75 residues) as well as deletion of the HOOK domain (47 residues) did not alter plasma membrane density of CaV2.3 nor its typical activation gating. In contrast, six-residue deletions in the GK domain disrupted cell surface trafficking and functional expression of CaV2.3. Mutations of residues known to carry nanomolar affinity binding in the GK domain of CaVβ (P175A, P179A, M195A, M196A, K198A, S295A, R302G, R307A, E339G, N340G, and A345G) did not significantly alter cell surface targeting or gating modulation of CaV2.3. Nonetheless, mutations of a quartet of leucine residues (either single or multiple mutants) in the α3, α6, β10, and α9 regions of the GK domain were found to significantly impair cell surface density of CaV2.3 channels. Furthermore, the normalized protein density of CaV2.3 was nearly abolished with the quadruple CaVβ3 Leu mutant L200G/L303G/L337G/L342G. Altogether, our observations suggest that the four leucine residues in CaVβ3 form a hydrophobic pocket surrounding key residues in the α-interacting domain of CaV2.3. This interaction appears to play an essential role in conferring CaVβ-induced modulation of the protein density of CaVα1 subunits in CaV2 channels.  相似文献   

11.
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) and receptor-interacting protein 1 (RIP1) play critical roles in activating c-Jun N-terminal kinase (JNK) and inhibitor of κB kinase (IKK), as well as in inhibiting apoptosis induced by TNFα. The TRAF2 RING domain-mediated polyubiquitination of RIP1 is believed to be essential for TNFα-induced IKK activation, and the RING-domain-deleted TRAF2 (TRAF2-ΔR) has been widely used as a dominant negative in transient overexpression systems to block TNFα-induced JNK and IKK activation. Here, we report that stable expression of TRAF2-ΔR at a physiological level in TRAF2 and TRAF5 double knockout (TRAF2/5 DKO) cells almost completely restores normal TNFα-induced IKK activation, but not RIP1 polyubiquitination. In addition, stable expression of TRAF2-ΔR in TRAF2/5 DKO cells efficiently inhibited the TNFα-induced later phase of prolonged JNK activation, yet failed to inhibit TNFα-induced cell death. Although the basal and inducible expression of anti-apoptotic proteins in TRAF2-ΔR-expressing TRAF2/5 DKO cells was normal, the cells remained sensitive to TNFα-induced cell death because anti-apoptotic proteins were not recruited to the TNFR1 complex efficiently. Moreover, stable expression of TRAF2-ΔR in TRAF2/5 DKO cells failed to suppress constitutive p100 processing in these cells. These data suggest that (i) the TRAF2 RING domain plays a critical role in inhibiting cell death induced by TNFα and is essential for suppressing the noncanonical nuclear factor κB pathway in unstimulated cells; (ii) RIP1 polyubiquitination is not essential for TNFα-induced IKK activation; and (iii) prolonged JNK activation has no obligate role in TNFα-induced cell death.  相似文献   

12.
Phoneutria nigriventer spider venom (PNV) contains Ca(2+), K(+) and Na(+) channel-acting peptides that affect neurotransmitter release and causes excitotoxicity in PNS and CNS. It has been demonstrated that PNV causes blood-brain barrier (BBB) breakdown of hippocampal microvessels time-dependently through enhanced microtubule-mediated vesicular transport. Herein, it is hypothesized that PNV can cause BBB breakdown in the hippocampus and cerebellum time-dependently through other molecular mechanisms. The BBB integrity was assessed through the analysis of expression of Poly-glycoprotein (P-gp) efflux transporter protein, laminin from basement membrane and endothelial tight junctional and adhesion junctional (TJ/AJ) proteins. Phosphatase and tensin homolog (PTEN) and protein phosphatase 2A (PP2A) expression, which are known to have a role in the phosphorylation of junctional proteins and BBB opening, were also investigated. Astrocytes P-gp activity was determined by flow cytometry. The study demonstrated temporary decreased expression of laminin, TJ and AJ proteins (ZO1//occludin//claudin-5//beta-catenin) and P-gp (more prominently in hippocampus), which was completely or partially resolved between 2 and 5?h (and more quickly for cerebellum). PNV inhibited P-gp activity in astrocytes. PP2A phosphorylation, which inhibits the enzyme activity, was increased in both regions (15-45?min); however the phosphorylation level returned to baseline after 2?h. In conclusion, PNV disrupts paracellular transport in the BBB and possesses substrates for the active P-gp efflux transporter located in the BBB complex. Further studies into cellular mechanisms of astrocyte/endothelial interactions, using PNV as tool, may identify how astrocytes regulate the BBB, a characteristic that may be useful for the temporary opening of the BBB.  相似文献   

13.
Elevated plasma levels of apolipoprotein B (apoB)–containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity.  相似文献   

14.
15.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8–65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a β-sheet-rich conformation that contains three β-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third β-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the β-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt β-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the β-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.  相似文献   

16.
17.
Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure–function relationships in the evolution of spermine oxidase.  相似文献   

18.

Background

PKCθ is a novel protein kinase C isozyme, predominately expressed in T cells and platelets. PKCθ−/− T cells exhibit reduced activation and PKCθ−/− mice are resistant to autoimmune disease, making PKCθ an attractive therapeutic target for immune modulation. Collagen is a major agonist for platelets, operating through an immunoreceptor-like signalling pathway from its receptor GPVI. Although it has recently been shown that PKCθ positively regulates outside-in signalling through integrin αIIbβ3 in platelets, the role of PKCθ in GPVI-dependent signalling and functional activation of platelets has not been assessed.

Methodology/Principal Findings

In the present study we assessed static adhesion, cell spreading, granule secretion, integrin αIIbβ3 activation and platelet aggregation in washed mouse platelets lacking PKCθ. Thrombus formation on a collagen-coated surface was assessed in vitro under flow. PKCθ−/− platelets exhibited reduced static adhesion and filopodia generation on fibrinogen, suggesting that PKCθ positively regulates outside-in signalling, in agreement with a previous report. In contrast, PKCθ−/− platelets also exhibited markedly enhanced GPVI-dependent α-granule secretion, although dense granule secretion was unaffected, suggesting that PKCθ differentially regulates these two granules. Inside-out regulation of αIIbβ3 activation was also enhanced downstream of GPVI stimulation. Although this did not result in increased aggregation, importantly thrombus formation on collagen under high shear (1000 s−1) was enhanced.

Conclusions/Significance

These data suggest that PKCθ is an important negative regulator of thrombus formation on collagen, potentially mediated by α-granule secretion and αIIbβ3 activation. PKCθ therefore may act to restrict thrombus growth, a finding that has important implications for the development and safe clinical use of PKCθ inhibitors.  相似文献   

19.
20.

Background

The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the Cα atoms which are modeled with modest accuracy.

Methodology/Principal Findings

In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of Cα atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of Cα. We extend the method further to recognize potential protein-protein interface residues.

Conclusion/ Significance

Our approach to identify buried and exposed residues solely from the positions of Cα atoms resulted in an accuracy of 84%, sensitivity of 83–89% and specificity of 67–94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70–96% and specificity of 58–94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from Cα positions and all-atom models suggested that, recognition of interfacial residues using Cα atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only Cα positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号