首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of the international program on the ecology of influenza virus in animals sponsored by W.H.O., 357 influenza A viruses isolated from 2 293 cloacal samples collected from ducks and other bird species in Eastern Canada during the 1978 season were characterized antigenically. Seven hemagglutinin (Hsw 1, H2, H3, Hav2, Hav4, Hav6, Hav7) and six neuraminidase subtypes (N1, N2, Neq2, Nav1, Nav5, Nav6) in 18 different combinations were found. A comparison with viruses isolated during previous seasons indicates that subtypes do change from year-to-year and from place-to-place. Isolation of few viruses from passerine birds requires additional studies to determine if these species are truly infected with influenza virus in nature. This large reservoir of influenza A viruses circulating at the same time in ducks may well be involved in the appearance of new viruses in other species, including humans.  相似文献   

2.
Emergence of influenza A viruses.   总被引:9,自引:0,他引:9  
Pandemic influenza in humans is a zoonotic disease caused by the transfer of influenza A viruses or virus gene segments from animal reservoirs. Influenza A viruses have been isolated from avian and mammalian hosts, although the primary reservoirs are the aquatic bird populations of the world. In the aquatic birds, influenza is asymptomatic, and the viruses are in evolutionary stasis. The aquatic bird viruses do not replicate well in humans, and these viruses need to reassort or adapt in an intermediate host before they emerge in human populations. Pigs can serve as a host for avian and human viruses and are logical candidates for the role of intermediate host. The transmission of avian H5N1 and H9N2 viruses directly to humans during the late 1990s showed that land-based poultry also can serve between aquatic birds and humans as intermediate hosts of influenza viruses. That these transmission events took place in Hong Kong and China adds further support to the hypothesis that Asia is an epicentre for influenza and stresses the importance of surveillance of pigs and live-bird markets in this area.  相似文献   

3.
Influenza viruses: transmission between species   总被引:3,自引:0,他引:3  
The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).  相似文献   

4.
Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.  相似文献   

5.
The emergence of influenza viruses resistant to existing classes of antiviral drugs raises concern and there is a need for novel antiviral agents that could be used therapeutically or prophylacticaly. Surfactant protein D (SP-D) belongs to the family of C-type lectins which are important effector molecules of the innate immune system with activity against bacteria and viruses, including influenza viruses. In the present study we evaluated the potential of recombinant porcine SP-D as an antiviral agent against influenza A viruses (IAVs) in vitro. To determine the range of antiviral activity, thirty IAVs of the subtypes H1N1, H3N2 and H5N1 that originated from birds, pigs and humans were selected and tested for their sensitivity to recombinant SP-D. Using these viruses it was shown by hemagglutination inhibition assay, that recombinant porcine SP-D was more potent than recombinant human SP-D and that especially higher order oligomeric forms of SP-D had the strongest antiviral activity. Porcine SP-D was active against a broad range of IAV strains and neutralized a variety of H1N1 and H3N2 IAVs, including 2009 pandemic H1N1 viruses. Using tissue sections of ferret and human trachea, we demonstrated that recombinant porcine SP-D prevented attachment of human seasonal H1N1 and H3N2 virus to receptors on epithelial cells of the upper respiratory tract. It was concluded that recombinant porcine SP-D holds promise as a novel antiviral agent against influenza and further development and evaluation in vivo seems warranted.  相似文献   

6.
Dong G  Luo J  Zhang H  Wang C  Duan M  Deliberto TJ  Nolte DL  Ji G  He H 《PloS one》2011,6(2):e17212
H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A-G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses.  相似文献   

7.
Migratory waterfowl of the world are the natural reservoirs of influenza viruses of all known subtypes. However, it is unknown whether these waterfowl perpetuate highly pathogenic (HP) H5 and H7 avian influenza viruses. Here we report influenza virus surveillance from 2001 to 2006 in wild ducks in Alberta, Canada, and in shorebirds and gulls at Delaware Bay (New Jersey), United States, and examine the frequency of exchange of influenza viruses between the Eurasian and American virus clades, or superfamilies. Influenza viruses belonging to each of the subtypes H1 through H13 and N1 through N9 were detected in these waterfowl, but H14 and H15 were not found. Viruses of the HP Asian H5N1 subtypes were not detected, and serologic studies in adult mallard ducks provided no evidence of their circulation. The recently described H16 subtype of influenza viruses was detected in American shorebirds and gulls but not in ducks. We also found an unusual cluster of H7N3 influenza viruses in shorebirds and gulls that was able to replicate well in chickens and kill chicken embryos. Genetic analysis of 6,767 avian influenza gene segments and 248 complete avian influenza viruses supported the notion that the exchange of entire influenza viruses between the Eurasian and American clades does not occur frequently. Overall, the available evidence does not support the perpetuation of HP H5N1 influenza in migratory birds and suggests that the introduction of HP Asian H5N1 to the Americas by migratory birds is likely to be a rare event.  相似文献   

8.
Evolution and ecology of influenza A viruses.   总被引:148,自引:0,他引:148       下载免费PDF全文
In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.  相似文献   

9.
H9N2 influenza viruses have become established and maintain long-term endemicity in terrestrial poultry in Asian countries. Occasionally these viruses transmit to other mammals, including humans. Increasing epidemiological and laboratory findings suggest that quail may be an important host, as they are susceptible to different subtypes of influenza viruses. To better understand the role of quail in influenza virus ecology and evolution, H9N2 viruses isolated from quail during 2000 to 2005 were antigenically and genetically characterized. Our results showed that H9N2 viruses are prevalent year-round in southern China and replicate mainly asymptomatically in the respiratory tract of quail. Genetic analysis revealed that both the G1-like and Ck/Bei-like H9N2 lineages were cocirculating in quail since 2000. Phylogenetic analyses demonstrated that most of the isolates tested were double- or multiple-reassortant variants, with four G1-like and 16 Ck/Bei-like genotypes recognized. A novel genotype of G1-like virus became predominant in quail since 2003, while multiple Ck/Bei-like genotypes were introduced into quail, wherein they incorporated G1-like gene segments, but none of them became established in this host. Those Ck/Bei-like reassortants generated in quail have then been introduced into other poultry. These complex interactions form a two-way transmission system between quail and other types of poultry. The present study provides evidence that H9N2 and H5N1 subtype viruses have also exchanged gene segments to generate currently circulating reassortants of both subtypes that have pandemic potential. Continuing influenza virus surveillance in poultry is critical to understanding the genesis and emergence of potentially pandemic strains in this region.  相似文献   

10.
Lei F  Shi W 《Current Genomics》2011,12(7):466-474
The outbreak of highly pathogenic avian influenza (HPAI) H5N1 disease has led to significant loss of poultry and wild life and case fatality rates in humans of 60%. Wild birds are natural hosts for all avian influenza virus subtypes and over120 bird species have been reported with evidence of H5N1 infection. Influenza A viruses possess a segmented RNA genome and are characterized by frequently occurring genetic reassortment events, which play a very important role in virus evolution and the spread of novel gene constellations in immunologically naïve human and animal populations. Phylogenetic analysis of whole genome or sub-genomic sequences is a standard means for delineating genetic variation, novel reassortment events, and surveillance to trace the global transmission pathways. In this paper, special emphasis is given to the transmission and circulation of H5N1 among wild life populations, and to the reassortment events that are associated with inter-host transmission of the H5N1 viruses when they infect different hosts, such as birds, pigs and humans. In addition, we review the inter-subtype reassortment of the viral segments encoding inner proteins between the H5N1 viruses and viruses of other subtypes, such as H9N2 and H6N1. Finally, we highlight the usefulness of genomic sequences in molecular epidemiological analysis of HPAI H5N1 and the technical limitations in existing analytical methods that hinder them from playing a greater role in virological research.  相似文献   

11.
2013年在中国首次发生了H7N9亚型流感病毒感染人事件,已经证实H7N9型禽流感是一种新型禽流感,是全球首次发现感染人类的新亚型流感病毒,以往这种病毒只在野生鸟类存在和传播。H7N9型禽流感病毒属于H7亚型中的一种,全球感染人的H7亚型病毒主要分为两大支系,即北美支系和欧亚支系,感染人的流感亚型也主要集中在H7N7,H7N3,H7N2等亚型上。为了清晰的了解H7亚型病毒的来龙去脉,本文重点讨论了A亚型流感病毒的宿主分布、H7亚型病毒感染禽类和人类的历史、H7亚型病毒的生物学特性以及未来研究展望。  相似文献   

12.
A current view of the emergence of pandemic influenza viruses envisages a gene flow from the aquatic avian reservoir to humans via reassortment in pigs, the hypothetical "mixing vessel." Understanding arising from recent H5N1 influenza outbreaks in Hong Kong since 1997 and the isolation of avian H9N2 virus from humans raises alternative options for the emergence of a new pandemic virus. Here we report that H9N2 influenza viruses established in terrestrial poultry in southern China are transmitted back to domestic ducks, in which the viruses generate multiple reassortants. These novel H9N2 viruses are double or even triple reassortants that have amino acid signatures in their hemagglutinin, indicating their potential to directly infect humans. Some of them contain gene segments that are closely related to those of A/Hong Kong/156/97 (H5N1/97, H5N1) or A/Quail/Hong Kong/G1/97 (G1-like, H9N2). More importantly, some of their internal genes are closely related to those of novel H5N1 viruses isolated during the outbreak in Hong Kong in 2001. This study reveals a two-way transmission of influenza virus between terrestrial and aquatic birds that facilitates the generation of novel reassortant H9N2 influenza viruses. Such reassortants may directly or indirectly play a role in the emergence of the next pandemic virus.  相似文献   

13.
In 1997, an H5N1 influenza virus outbreak occurred in chickens in Hong Kong, and the virus was transmitted directly to humans. Because there is limited information about the avian influenza virus reservoir in that region, we genetically characterized virus strains isolated in Hong Kong during the 1997 outbreak. We sequenced the gene segments of a heterogeneous group of viruses of seven different serotypes (H3N8, H4N8, H6N1, H6N9, H11N1, H11N9, and H11N8) isolated from various bird species. The phylogenetic relationships divided these viruses into several subgroups. An H6N1 virus isolated from teal (A/teal/Hong Kong/W312/97 [H6N1]) showed very high (>98%) nucleotide homology to the human influenza virus A/Hong Kong/156/97 (H5N1) in the six internal genes. The N1 neuraminidase sequence showed 97% nucleotide homology to that of the human H5N1 virus, and the N1 protein of both viruses had the same 19-amino-acid deletion in the stalk region. The deduced hemagglutinin amino acid sequence of the H6N1 virus was most similar to that of A/shearwater/Australia/1/72 (H6N5). The H6N1 virus is the first known isolate with seven H5N1-like segments and may have been the donor of the neuraminidase and the internal genes of the H5N1 viruses. The high homology between the internal genes of H9N2, H6N1, and the H5N1 isolates indicates that these subtypes are able to exchange their internal genes and are therefore a potential source of new pathogenic influenza virus strains. Our analysis suggests that surveillance for influenza A viruses should be conducted for wild aquatic birds as well as for poultry, pigs, and humans and that H6 isolates should be further characterized.  相似文献   

14.
In 1997, avian H5N1 influenza virus transmitted from chickens to humans resulted in 18 confirmed infections. Despite harboring lethal H5N1 influenza viruses, most chickens in the Hong Kong poultry markets showed no disease signs. At this time, H9N2 influenza viruses were cocirculating in the markets. We investigated the role of H9N2 influenza viruses in protecting chickens from lethal H5N1 influenza virus infections. Sera from chickens infected with an H9N2 influenza virus did not cross-react with an H5N1 influenza virus in neutralization or hemagglutination inhibition assays. Most chickens primed with an H9N2 influenza virus 3 to 70 days earlier survived the lethal challenge of an H5N1 influenza virus, but infected birds shed H5N1 influenza virus in their feces. Adoptive transfer of T lymphocytes or CD8(+) T cells from inbred chickens (B(2)/B(2)) infected with an H9N2 influenza virus to naive inbred chickens (B(2)/B(2)) protected them from lethal H5N1 influenza virus. In vitro cytotoxicity assays showed that T lymphocytes or CD8(+) T cells from chickens infected with an H9N2 influenza virus recognized target cells infected with either an H5N1 or H9N2 influenza virus in a dose-dependent manner. Our findings indicate that cross-reactive cellular immunity induced by H9N2 influenza viruses protected chickens from lethal infection with H5N1 influenza viruses in the Hong Kong markets in 1997 but permitted virus shedding in the feces. Our findings are the first to suggest that cross-reactive cellular immunity can change the outcome of avian influenza virus infection in birds in live markets and create a situation for the perpetuation of H5N1 influenza viruses.  相似文献   

15.
16.
The transmission of H9N2 influenza viruses to humans and the realization that the A/Hong Kong/156/97-like (H5N1) (abbreviated HK/156/97) genome complex may be present in H9N2 viruses in southeastern China necessitated a study of the distribution and characterization of H9N2 viruses in poultry in the Hong Kong SAR in 1999. Serological studies indicated that H9N2 influenza viruses had infected a high proportion of chickens and other land-based birds (pigeon, pheasant, quail, guinea fowl, and chukka) from southeastern China. Two lineages of H9N2 influenza viruses present in the live-poultry markets were represented by A/Quail/Hong Kong/G1/97 (Qa/HK/G1/97)-like and A/Duck/Hong Kong/Y280/97 (Dk/HK/Y280/97)-like viruses. Up to 16% of cages of quail in the poultry markets contained Qa/HK/G1/97-like viruses, while about 5% of cages of other land-based birds were infected with Dk/HK/Y280/97-like viruses. No reassortant between the two H9N2 virus lineages was detected despite their cocirculation in the poultry markets. Reassortant viruses represented by A/Chicken/Hong Kong/G9/97 (H9N2) were the major H9N2 influenza viruses circulating in the Hong Kong markets in 1997 but have not been detected since the chicken slaughter in 1997. The Qa/HK/G1/97-like viruses were frequently isolated from quail, while Dk/HK/Y280/97-like viruses were predominately associated with chickens. The Qa/HK/G1/97-like viruses were evolving relatively rapidly, especially in their PB2, HA, NP, and NA genes, suggesting that they are in the process of adapting to a new host. Experimental studies showed that both H9N2 lineages were primarily spread by the aerosol route and that neither quail nor chickens showed evidence of disease. The high prevalence of quail infected with Qa/HK/G1/97-like virus that contains six gene segments genetically highly related to HK/156/97 (H5N1) virus emphasizes the need for surveillance of mammals including humans.  相似文献   

17.
H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.  相似文献   

18.
Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO(3))GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO(3))GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry.  相似文献   

19.
Emergence of avian H1N1 influenza viruses in pigs in China.   总被引:20,自引:1,他引:19       下载免费PDF全文
Avian influenza A viruses from Asia are recognized as the source of genes that reassorted with human viral genes to generate the Asian/57 (H2N2) and Hong Kong/68 (H3N2) pandemic strains earlier in this century. Here we report the genetic analysis of avian influenza A H1N1 viruses recently isolated from pigs in southern China, a host suspected to generate new pandemic strains through gene reassortment events. Each of the eight gene segments was of avian origin. Phylogenetic analysis indicates that these genes form an Asian sublineage of the Eurasian avian lineage, suggesting that these viruses are an independent introduction into pigs in Asia. The presence of avian influenza viruses in pigs in China places them in an optimal position for transmission to humans and may serve as an early warning of the emergence of the next human influenza virus pandemic.  相似文献   

20.
Persistent host markers in pandemic and H5N1 influenza viruses   总被引:3,自引:0,他引:3       下载免费PDF全文
Avian influenza viruses have adapted to human hosts, causing pandemics in humans. The key host-specific amino acid mutations required for an avian influenza virus to function in humans are unknown. Through multiple-sequence alignment and statistical testing of each aligned amino acid, we identified markers that discriminate human influenza viruses from avian influenza viruses. We applied strict thresholds to select only markers which are highly preserved in human influenza virus isolates over time. We found that a subset of these persistent host markers exist in all human pandemic influenza virus sequences from 1918, 1957, and 1968, while others are acquired as the virus becomes a seasonal influenza virus. We also show that human H5N1 influenza viruses are significantly more likely to contain the amino acid predominant in human strains for a few persistent host markers than avian H5N1 influenza viruses. This sporadic enrichment of amino acids present in human-hosted viruses may indicate that some H5N1 viruses have made modest adaptations to their new hosts in the recent past. The markers reported here should be useful in monitoring potential pandemic influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号