首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We consider here how morphogenetic signals involving retinoic acid (RA) are switched on and off in the light of positive and negative feedback controls which operate in other embryonic signalling systems. Switching on the RA signal involves the synthetic retinaldehyde dehydrogenase (RALDH) enzymes and it is currently thought that switching off the RA signal involves the CYP26 enzymes which catabolise RA. We have tested whether these enzymes are regulated by the presence or absence of all-trans-RA using the vitamin A-deficient quail model system and the application of excess retinoids on beads to various locations within the embryo. The Raldhs are unaffected either by the absence or presence of excess RA, whereas the Cyps are strongly affected. In the absence of RA some, but not all domains of Cyp26A1, Cyp26B1 and Cyp26C1 are down-regulated, in particular the spinal cord (Cyp26A1), the heart and developing vasculature (Cyp26B1) and the rhombomeres (Cyp26C1). In the presence of excess RA, the Cyps show a differential regulation-Cyp26A1 and Cyp26B1 are up-regulated whereas Cyp26C1 is down-regulated. We tested whether the Cyp products have a similar influence on these genes and indeed 4-oxo-RA, 4-OH-RA and 5,6-epoxy-RA do. Furthermore, these 3 metabolites are biologically active in that they fully rescue the vitamin A-deficient quail embryo. Finally, by using retinoic acid receptor selective agonists we show that these compounds regulate the Cyps through the RARalpha receptor. These results are discussed with regard to positive and negative feedback controls in developing systems.  相似文献   

2.
Skeletal syndromes are among the most common birth defects. Vertebrate skeletogenesis involves two major cell types: cartilage-forming chondrocytes and bone-forming osteoblasts. In vitro, both are under the control of retinoic acid (RA), but its exact in vivo effects remained elusive. Here, based on the positional cloning of the dolphin mutation, we have studied the role of the RA-oxidizing enzyme Cyp26b1 during cartilage and bone development in zebrafish. cyp26b1 is expressed in condensing chondrocytes as well as in osteoblasts and their precursors. cyp26b1 mutants and RA-treated wild-type fish display a reduction in midline cartilage and the hyperossification of facial and axial bones, leading to fusions of vertebral primordia, a defect not previously described in the context of RA signaling. Fusions of cervical vertebrae were also obtained by treating mouse fetuses with the specific Cyp26 inhibitor R115866. Together with data on the expression of osteoblast markers, our results indicate that temporal and spatial restriction of RA signaling by Cyp26 enzymes is required to attenuate osteoblast maturation and/or activity in vivo. cyp26b1 mutants may serve as a model to study the etiology of human vertebral disorders such as Klippel-Feil anomaly.  相似文献   

3.
We have investigated the role of retinoic acid (RA) in eye development using the vitamin A deficient quail model system, which overcomes problems of retinoic acid synthesising enzyme redundancy in the embryo. In the absence of retinoic acid, the ventral optic stalk and ventral retina are missing, whereas the dorsal optic stalk and dorsal retina develop appropriately. Other ocular abnormalities observed were a thinner retina and the lack of differentiation of the lens. In an attempt to explain this, we studied the expression of various dorsally and ventrally expressed genes such as Pax2, Pax6, Tbx6, Vax2, Raldh1 and Raldh3 and noted that they were unchanged in their expression patterns. In contrast, the RA catabolising enzymes Cyp26A1 and Cyp26B1 which are known to be RA-responsive were not expressed at all in the developing eye. At much earlier stages, the expression domain of Shh in the prechordal plate was reduced, as was Nkx2.1 and we suggest a model whereby the eye field is specified according to the concentration of SHH protein that is present. We also describe another organ, Rathke's pouch which fails to develop in the absence of retinoic acid. We attribute this to the down-regulation of Bmp2, Shh and Fgf8 which are known to be involved in the induction of this structure.  相似文献   

4.
The vitamin A derivative retinoic acid (RA) is a morphogen that patterns the anterior-posterior axis of the vertebrate hindbrain. Cellular retinoic acid-binding proteins (Crabps) transport RA within cells to both its nuclear receptors (RARs) and degrading enzymes (Cyp26s). However, mice lacking Crabps are viable, suggesting that Crabp functions are redundant with those of other fatty acid-binding proteins. Here we show that Crabps in zebrafish are essential for posterior patterning of the hindbrain and that they provide a key feedback mechanism that makes signaling robust as they are able to compensate for changes in RA production. Of the four zebrafish Crabps, Crabp2a is uniquely RA inducible and depletion or overexpression of Crabp2a makes embryos hypersensitive to exogenous RA. Computational models confirm that Crabp2a improves robustness within a narrow concentration range that optimizes a 'robustness index', integrating spatial information along the RA morphogen gradient. Exploration of signaling parameters in our models suggests that the ability of Crabp2a to transport RA to Cyp26 enzymes for degradation is a major factor in promoting robustness. These results demonstrate a previously unrecognized requirement for Crabps in RA signaling and hindbrain development, as well as a novel mechanism for stabilizing morphogen gradients despite genetic or environmental fluctuations in morphogen availability.  相似文献   

5.
We have cloned a fragment of Cyp26B1, a novel retinoic acid (RA) catabolising enzyme, and examined its expression pattern during early stages of chick embryogenesis. It is expressed from stage 7 in the tail bud, an anterior patch of mesenchyme, the heart, the endothelium of the vasculature, the eye, the limb bud, the hindgut and in a complex pattern in the rhombomeres of the hindbrain. As such it has a non-overlapping expression with chick Cyp26A1, the other RA catabolising enzyme, but shows a combination of features of mouse Cyp26A1 and Cyp26B1. We have also examined its expression in the quail embryo and in the RA-free quail embryo. In the absence of RA, Cyp26B1 is only expressed in the hindbrain and fails to be expressed in all the other regions of the embryo, most dramatically in the trunk. Adding back RA rescues Cyp26B1 expression.  相似文献   

6.
We have previously reported that the retinoic acid (RA) catabolizing enzyme CYP26A1 plays an important role in protecting tail bud tissues from inappropriate exposure to RA generated in the adjacent trunk tissues by RALDH2, and that Cyp26a1-null animals exhibit spina bifida and caudal agenesis. We now show that, in the absence of Cyp26a1, retinoic acid receptor gamma (RARgamma) mediates ectopic RA-signaling in the tail bud. We also show that activated RARgamma results in downregulation of Wnt3a and Fgf8, which integrate highly conserved signaling pathways known for their role in specifying caudal morphogenesis. Ablation of the gene for RARgamma (Rarg) rescues Cyp26a1-null mutant animals from caudal regression and embryonic lethality, thus demonstrating that CYP26A1 suppresses the RA-mediated downregulation of WNT3A and FGF8 signaling pathways by eliminating ectopic RA in gastrulating tail bud mesoderm.  相似文献   

7.
The vitamin A metabolite retinoic acid (RA) has potent immunomodulatory properties that affect T cell differentiation, migration and function. However, the precise role of RA metabolism in T cells remains unclear. Catabolism of RA is mediated by the Cyp26 family of cytochrome P450 oxidases. We examined the role of Cyp26b1, the T cell-specific family member, in CD4+ T cells. Mice with a conditional knockout of Cyp26b1 in T cells (Cyp26b1 −/− mice) displayed normal lymphoid development but showed an increased sensitivity to serum retinoids, which led to increased differentiation under both inducible regulatory T (iTreg) cell- and TH17 cell-polarizing conditions in vitro. Further, Cyp26b1 expression was differentially regulated in iTreg and TH17 cells. Transfer of naïve Cyp26b1 −/− CD4+ T cells into Rag1 −/− mice resulted in significantly reduced disease in a model of T cell-dependent colitis. Our results show that T cell-specific expression of Cyp26b1 is required for the development of T cell-mediated colitis and may be applicable to the development of therapeutics that target Cyp26b1 for the treatment of inflammatory bowel disease.  相似文献   

8.
9.
Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.  相似文献   

10.
Retinoid signaling is essential for development of vertebrate embryos, and its action is mainly through retinoic acid (RA) binding to its RA receptors and retinoid-X receptors, while the critical concentration and localization of RA in embryos are determined by the presence and activity of retinal dehydrogenases (for RA synthesis) and cytochrome P450 RAs (Cyp26s) (for degradation of RA). Previously, we identified a novel cyp26 gene (cyp26d1) in zebrafish that is expressed in hindbrain during early development. Using reverse-phase HPLC analyses, we show here that zebrafish Cyp26D1 expressed in 293T cells could metabolize all-trans RA, 9-cis RA, and 13-cis RA, but could not metabolize retinol or retinal. The metabolites of all-trans RA produced by Cyp26D1 were the same as that produced by Cyp26A1, which are mainly 4-hydroxy-all-trans-RA and 4-oxo-all-trans-RA. Performing mRNA microinjection into zebrafish embryos, we demonstrated that overexpression of Cyp26D1 in embryos not only caused the distance between rhombomere 5 and the first somite of the injected embryos to be shorter than control embryos but also resulted in left-right asymmetry of somitogenesis in the injected embryos. These alterations were similar to those caused by the overexpression of cyp26a1 in zebrafish embryos and to that which resulted from treating embryos with 1 microm 4-diethylamino-benzaldehyde (retinal dehydrogenase inhibitor), implying that cyp26d1 can antagonize RA activity in vivo. Together, our in vitro and in vivo results provided direct evidence that zebrafish Cyp26D1 is involved in RA metabolism.  相似文献   

11.
12.
13.
The developing mammalian embryo is entirely dependent on the maternal circulation for its supply of retinoids (vitamin A and its metabolites). The mechanisms through which mammalian developing tissues maintain adequate retinoid levels in the face of suboptimal or excessive maternal dietary vitamin A intake have not been established. We investigated the role of retinyl ester formation catalyzed by lecithin:retinol acyltransferase (LRAT) in regulating retinoid homeostasis during embryogenesis. Dams lacking both LRAT and retinol-binding protein (RBP), the sole specific carrier for retinol in serum, were maintained on diets containing different amounts of vitamin A during pregnancy. We hypothesized that the lack of both proteins would make the embryo more vulnerable to changes in maternal dietary vitamin A intake. Our data demonstrate that maternal dietary vitamin A deprivation during pregnancy generates a severe retinoid-deficient phenotype of the embryo due to the severe retinoid-deficient status of the double mutant dams rather than to the lack of LRAT in the developing tissues. Moreover, in the case of excessive maternal dietary vitamin A intake, LRAT acts together with Cyp26A1, one of the enzymes that catalyze the degradation of retinoic acid, and possibly with STRA6, the recently identified cell surface receptor for retinol-RBP, in maintaining adequate levels of retinoids in embryonic and extraembryonic tissues. In contrast, the pathway of retinoic acid synthesis does not contribute significantly to regulating retinoid homeostasis during mammalian development except under conditions of severe maternal retinoid deficiency.  相似文献   

14.
Fourier transform infrared spectroscopy is utilized to examine the effects of increased calcium, vitamin D, and combined calcium-vitamin D supplementation on osteoporotic rabbit bones with induced inflammation. The study includes different bone sites (femur, tibia, humerus, vertebral rib) in an effort to explore possible differences among the sites. We evaluate the following parameters: mineral-to-matrix ratio, carbonate content, and non-apatitic species (labile acid phosphate and labile carbonate) contribution to bone mineral. Results show that a relatively high dose of calcium or calcium with vitamin D supplementation increases the bone mineralization index significantly. On the other hand, vitamin D alone is not as effective in promoting mineralization even with high intake. Mature B-type apatite was detected for the group with calcium supplementation similar to that of aged bone. High vitamin D intake led to increased labile species concentration revealing bone formation. This is directly associated with the suppression of pro-inflammatory cytokines linked to induced inflammation. The latter is known to adversely alter bone metabolism, contributing to the aetiopathogenesis of osteoporosis. Thus, a high intake of vitamin D under inflammation-induced osteoporosis does not promote mineralization but suppresses bone resorption and restores metabolic balance.  相似文献   

15.
In the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis. Analysis of the mutation on a RA-reporter mouse background confirmed, as expected, that the RA-poor stripe was missing in the retina and its projections at the time when the optic axons first grow over the diencephalon. A day later, however, a gap appeared both in retina and retinofugal projections. As explanation, we found that CYP26C1, another RA-degrading enzyme, had emerged centrally in a narrower domain within the RA-poor stripe. While RA applications increased retinal Cyp26a1 expression, they slightly reduced Cyp26c1. These observations indicate that the two enzymes function independently. The safeguard of the RA-poor stripe by two distinct enzymes during later development points to a role in maturation of a significant functional feature like an area of higher visual acuity that develops at its location.  相似文献   

16.
Osteoactivin (OA) is a novel glycoprotein that is highly expressed during osteoblast differentiation. Using Western blot analysis, our data show that OA protein has two isoforms, one is transmembranous and the other is secreted into the conditioned medium of primary osteoblasts cultures. Fractionation of osteoblast cell compartments showed that the mature, glycosylated OA isoform of 115 kDa is found in the membranous fraction. Both OA isoforms (secreted and transmembrane) are found in the cytoplasmic fraction of osteoblasts. Overexpression of EGFP-tagged OA in osteoblasts showed that OA protein accumulates into vesicles for transportation to the cell membrane. We examined OA protein production in primary osteoblast cultures and found that OA is maximally expressed during the third week of culture (last stage of osteoblast differentiation). Glycosylation studies showed that OA isoform of 115 kDa is highly glycosylated. We also showed that retinoic acid (RA) stimulates the mannosylation of OA protein. In contrast, tunicamycin (TM) strongly inhibited N-glycans incorporation into OA protein. The functional role of the secreted OA isoform was revealed when cultures treated with anti-OA antibody, showed decreased osteoblast differentiation compared to untreated control cultures. Gain-of-function in osteoblasts using the pBABE viral system showed that OA overexpression in osteoblast stimulated their differentiation and function. The availability of a naturally occurring mutant mouse with a truncated OA protein provided further evidence that OA is an important factor for terminal osteoblast differentiation and mineralization. Using bone marrow mesenchymal cells derived from OA mutant and wild-type mice and testing their ability to differentiate into osteoblasts showed that differentiation of OA mutant osteoblasts was significantly reduced compared to wild-type osteoblasts. Collectively, our data suggest that OA acts as a positive regulator of osteoblastogenesis.  相似文献   

17.
Early neural patterning in vertebrates involves signals that inhibit anterior (A) and promote posterior (P) positional values within the nascent neural plate. In this study, we have investigated the contributions of, and interactions between, retinoic acid (RA), Fgf and Wnt signals in the promotion of posterior fates in the ectoderm. We analyze expression and function of cyp26/P450RAI, a gene that encodes retinoic acid 4-hydroxylase, as a tool for investigating these events. Cyp26 is first expressed in the presumptive anterior neural ectoderm and the blastoderm margin at the late blastula. When the posterior neural gene hoxb1b is expressed during gastrulation, it shows a strikingly complementary pattern to cyp26. Using these two genes, as well as otx2 and meis3 as anterior and posterior markers, we show that Fgf and Wnt signals suppress expression of anterior genes, including cyp26. Overexpression of cyp26 suppresses posterior genes, suggesting that the anterior expression of cyp26 is important for restricting the expression of posterior genes. Consistent with this, knock-down of cyp26 by morpholino oligonucleotides leads to the anterior expansion of posterior genes. We further show that Fgf- and Wnt-dependent activation of posterior genes is mediated by RA, whereas suppression of anterior genes does not depend on RA signaling. Fgf and Wnt signals suppress cyp26 expression, while Cyp26 suppresses the RA signal. Thus, cyp26 has an important role in linking the Fgf, Wnt and RA signals to regulate AP patterning of the neural ectoderm in the late blastula to gastrula embryo in zebrafish.  相似文献   

18.
Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stocksteif mutant, which exhibits severe over-ossification of the entire vertebral column. stocksteif encodes cyp26b1, a cytochrome P450 member that metabolizes RA. The mutant is completely phenocopied by treating 4 dpf wild-type embryos with either RA or the pharmacological Cyp26 blocker R115866, thus identifying a previously unappreciated role for RA and cyp26b1 in osteogenesis of the vertebral column. Cyp26b1 is expressed within osteoblast cells, demonstrating that RA levels within these cells need to be tightly controlled. Furthermore, we have examined the effect of RA on osteoblasts in vivo. As numbers of osteoblasts do not change upon RA treatment, we suggest that RA causes increased activity of axial osteoblasts, ultimately resulting in defective skeletogenesis.  相似文献   

19.
Vitamin A is known to be critical for the beginning of eye development as well as for photoreception in the functional retina. Hardly anything, however, is known about whether retinoic acid (RA)-regulated gene expression also plays a role in the long intervening period, during which the neurobiological retinal structure takes shape. The eye contains a highly intricate architecture of RA-synthesizing (RALDH) and degrading (CYP26) enzymes. Whereas the RALDHs are integrated in the early molecular mechanisms through which the dorso-ventral retina organization is established, the CYP26 enzymes are not necessary for this process and no molecular targets that match their retinal expression pattern have yet been identified. In this article we describe that CYP26 expression in the mouse is most distinctive during later stages of retina formation. Throughout development CYP26A1 degrades RA in a horizontal region that extends across the retina, but during later embryonic and postnatal retina maturation this function is reinforced by another enzyme, CYP26C1. RA applications at this stage do not affect the RALDHs but cause differential changes in CYP26 expression: Cyp26a1 is up-regulated, but more rapidly by 9-cis than all-trans RA, Cyp26c1 is down-regulated, and Cyp26b1, which is undetectable in the normal mouse retina, is strongly activated in retinal ganglion cells. The dynamic regulation in RA-difference patterns by the CYP26 enzymes may set up spatial constellations for expression of genes involved in formation of retinal specializations for higher acuity vision, which are known to form over a prolonged period late in retina development.  相似文献   

20.
Takeuchi H  Yokota A  Ohoka Y  Iwata M 《PloS one》2011,6(1):e16089

Background

The vitamin A metabolite, retinoic acid (RA), plays important roles in the regulation of lymphocyte properties. Dendritic cells in gut-related lymphoid organs can produce RA, thereby imprinting gut-homing specificity on T cells and enhancing transforming growth factor (TGF)-β-dependent induction of Foxp3+ regulatory T cells upon antigen presentation. In general, RA concentrations in cells and tissues are regulated by its degradation as well. However, it remained unclear if T cells could actively catabolize RA.

Methodology/Principal Findings

We assessed the expression of known RA-catabolizing enzymes in T cells from mouse lymphoid tissues. Antigen-experienced CD44+ T cells in gut-related lymphoid organs selectively expressed Cyp26b1, a member of the cytochrome P450 family 26. However, T cells in the spleen or skin-draining lymph nodes did not significantly express Cyp26b1. Accordingly, physiological levels of RA (1–10 nM) could induce Cyp26b1 expression in naïve T cells upon activation in vitro, but could not do so in the presence of TGF-β. Overexpression of Cyp26b1 significantly suppressed the RA effect to induce expression of the gut-homing receptor CCR9 on T cells. On the other hand, knocking down Cyp26b1 gene expression with small interfering RNA or inhibiting CYP26 enzymatic activity led to enhancement of the RA-induced CCR9 expression.

Conclusions/Significance

Our data demonstrate a role for CYP26B1 in regulating RA-dependent signals in activated T cells but not during TGF-β-dependent differentiation to Foxp3+ regulatory T cells. Aberrant expression of CYP26B1 may disturb T cell trafficking and differentiation in the gut and its related lymphoid organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号