首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Endogenous small RNAs (miRNAs and siRNAs) regulate gene expression in diverse biological processes.Research with the Arabidopsis-Pseudomonas syringae system has shown that small RNAs contribute to plan...  相似文献   

4.
Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.  相似文献   

5.
Attack of plants by necrotizing pathogens leads to acquired resistance to the same or other pathogens in tissues adjacent to or remotely located from the site of initial attack. We have used Arabidopsis thaliana inoculated with the incompatible pathogen Pseudomonas syringae pv syringae on the lower leaves to test the induction of systemic reactions. When plants were challenged with Pseudomonas syringae pv syringae in the upper leaves, bacterial titers remained stable in those preinfected on the lower leaves. However, there was a distinct decrease in symptoms that correlated with a local and systemic increase in salicylic acid (SA) and in chitinase activity. Peroxidase activity only increased at the site of infection. No changes in catalase activity were observed, either at the local or at the systemic level. No inhibition of catalase could be detected in tissue in which the endogenous levels of SA were elevated either naturally (after infection) or artificially (after feeding SA to the roots). The activity of catalase in homogenates of A. thaliana leaves could not be inhibited in vitro by SA. SA accumulation was induced by H2O2 in leaves, suggesting a link between H2O2 from the oxidative burst commonly observed during the hypersensitive reaction and the induction of a putative signaling molecule leading to system acquired resistance.  相似文献   

6.
The interaction between Arabidopsis thaliana and the bacterium Pseudomonas syringae is being developed as a model experimental system for plant pathology research. Race-specific ("gene-for-gene") resistance has been demonstrated for this interaction, and pathogen genes that determine avirulence have been isolated and characterized. Because certain lines of both Arabidopsis and soybean are resistant to bacteria carrying the avirulence genes avrRpt2 and avrB, extremely similar pathogen recognition mechanisms are apparently present in these two plant species. Isogenic bacterial strains that differ by the presence of single avirulence genes are being used to analyze plant resistance. Plant resistance genes have been identified in crosses between resistant and susceptible lines. The extensive map-based cloning tools available in Arabidopsis are being used to isolate these resistance genes. In a related project, ethylene-insensitive Arabidopsis mutants are being used to examine the role of ethylene in disease development. Ethylene apparently mediates symptom formation in susceptible plants and is not required for resistance, suggesting possible strategies for enhancement of disease tolerance in crops.  相似文献   

7.
In this study, we report the functional characterization of heterotrimeric G-proteins from a nonvascular plant, the moss Physcomitrella patens. In plants, G-proteins have been characterized from only a few angiosperms to date, where their involvement has been shown during regulation of multiple signaling and developmental pathways affecting overall plant fitness. In addition to its unparalleled evolutionary position in the plant lineages, the P. patens genome also codes for a unique assortment of G-protein components, which includes two copies of and genes, but no canonical . Instead, a single gene encoding an extra-large Gα (XLG) protein exists in the P. patens genome. Here, we demonstrate that in P. patens the canonical Gα is biochemically and functionally replaced by an XLG protein, which works in the same genetic pathway as one of the Gβ proteins to control its development. Furthermore, the specific G-protein subunits in P. patens are essential for its life cycle completion. Deletion of the genomic locus of PpXLG or PpGβ2 results in smaller, slower growing gametophores. Normal reproductive structures develop on these gametophores, but they are unable to form any sporophyte, the only diploid stage in the moss life cycle. Finally, the mutant phenotypes of ΔPpXLG and ΔPpGβ2 can be complemented by the homologous genes from Arabidopsis, AtXLG2 and AtAGB1, respectively, suggesting an overall conservation of their function throughout the plant evolution.In all known eukaryotes, cellular signaling involves heterotrimeric GTP-binding proteins (G-proteins), which consist of Gα, Gβ, and Gγ subunits (Cabrera-Vera et al., 2003). According to the established paradigm, when Gα is GDP-bound, it forms a trimeric complex with the Gβγ dimer and remains associated with a G-protein coupled receptor. Signal perception by the receptor facilitates GDP to GTP exchange on Gα. GTP-Gα dissociates from the Gβγ dimer, and both these entities can transduce the signal by interacting with different effectors. The duration of the active state is determined by the intrinsic GTPase activity of Gα, which hydrolyzes bound GTP into GDP and inorganic phosphate (Pi), followed by the reassociation of the inactive, trimeric complex (Siderovski and Willard, 2005).In plants, G-protein signaling has been studied in only a few angiosperms to date at the functional level, although the proteins exist in the entire plant lineage (Hackenberg and Pandey, 2014; Urano and Jones, 2014; Hackenberg et al., 2016). Interestingly, while the overall biochemistry of the individual G-protein components and the interactions between them are conserved between plant and metazoan systems, deviations from the established norm are also obvious. For example, the repertoire of canonical G-proteins is significantly limited in plants; the human genome codes for 23 Gα, 5 Gβ, and 12 Gγ proteins, whereas most plant genomes, including those of basal plants, typically encode 1 canonical Gα, 1 Gβ, and three to five Gγ proteins (Urano and Jones, 2014). The only exceptions are some polyploid species, such as soybean, which have retained most of the duplicated G-protein genes (Bisht et al., 2011; Choudhury et al., 2011). Moreover, even in plants that possess only a single canonical Gα and Gβ protein, for example Arabidopsis (Arabidopsis thaliana) and rice, the phenotypes of plants lacking either one or both proteins are relatively subtle. The mutant plants exhibit multiple developmental and signaling defects but are able to complete the life cycle without any major consequences. These observations have questioned the significance of G-protein mediated signaling pathways in plants.Interestingly, plants also possess certain unique variants of the classical G-protein components such as the type III Cys-rich Gγ proteins and extra-large GTP-binding (XLG) proteins, which add to the diversity and expanse of the G-protein signaling networks (Roy Choudhury et al., 2011; Chakravorty et al., 2015; Maruta et al., 2015). The XLG proteins are almost twice the size of typical Gα proteins, with the C-terminal region that codes for Gα-like domain and an extended N-terminal region without any distinctive features. Plant XLGs are encoded by entirely independent genes and therefore are different from the mammalian extra-long versions of Gα proteins such as XLαs and XXLαs, which are expressed due to the use of alternate exons (Abramowitz et al., 2004). Three to five copies of XLG proteins are present in the genome of most angiosperms. At the functional level, the XLG proteins have been characterized only from Arabidopsis, to date, where recent studies suggest that the proteins compete with canonical Gα for binding with the Gβγ dimers and may form functional trimeric complexes (Chakravorty et al., 2015; Maruta et al., 2015). The XLG and Gβγ mutants of Arabidopsis seem to function in the same pathways during the regulation of a subset of plant responses, for example primary root length and its regulation by abscisic acid (ABA); the root waving and skewing responses; sensitivity to Glc, salt, and tunicamycin; and sensitivity to certain bacterial and fungal pathogens (Ding et al., 2008; Pandey et al., 2008; Chakravorty et al., 2015; Maruta et al., 2015). However, many of the phenotypes of Arabidopsis Gα and Gβγ mutants are also distinct from that of the xlg triple mutants. For example, compared to the wild-type plants, the canonical G-protein mutants exhibit altered response to gibberellic acid, brassinosteroids, and auxin and show changes in leaf shape, branching, flowering time, and stomatal densities (Ullah et al., 2003; Chen et al., 2004; Pandey et al., 2006; Zhang et al., 2008; Nilson and Assmann, 2010). The xlg triple mutants behave similarly to wild-type plants in all these aspects of development and signaling. Moreover, whether the XLG proteins are authentic GTP-binding and -hydrolyzing proteins and the extent to which they directly participate in G-protein-mediated signaling pathways remains confounding (Chakravorty et al., 2015; Maruta et al., 2015). Even in plants with a limited number of G-protein subunits such as Arabidopsis, one Gα and three XLGs potentially compete for a single Gβ protein, and the analysis of null mutants is not straightforward, that is, it is not possible to delineate whether the phenotypes seen in the Gα null mutants are truly due to the lack of Gα and/or because of an altered stoichiometry or availability of Gβ for the XLG proteins.As a bryophyte, Physcomitrella patens occupies a unique position in the evolutionary history of plants. It lacks vasculature but exhibits alteration between generations, which is dominated by a gametophytic (haploid) phase and a short sporophytic (diploid) phase (Cove et al., 2009). Many of the pathways related to hormone signaling, stress responses, and development are conserved between angiosperms and P. patens (Cove et al., 2009; Sun, 2011; Komatsu et al., 2013; Yasumura et al., 2015). It is also an intriguing example in the context of the G-protein signaling, because its fully sequenced genome does not encode a canonical Gα gene, although genes coding for the Gβ and Gγ proteins exist. A single gene for a potential XLG homolog also exists in the P. patens genome. This unique assortment of proteins predicts several alternative scenarios for G-protein signaling in P. patens. For example, the P. patens Gβγ proteins might be nonfunctional due to the loss of canonical Gα and are left in the genome as evolutionary artifacts. Alternatively, the Gβγ proteins of P. patens might maintain functionality regardless of the existence of a canonical Gα protein in pathways not regulated via classic G-protein signaling modes. Finally, a more likely scenario could be that the potential XLG protein can substitute for the Gα function in P. patens.To explore these possibilities and understand better the conserved and unique mechanisms of G-protein signaling pathways in plants and their significance, we examined the role of G-protein subunits in P. patens. We provide unambiguous evidence for the genetic coupling of XLG and Gβ proteins in controlling P. patens development. In contrast to all other plant species analyzed to date, where G-proteins are not essential for growth and survival, the XLG or one of the Gβ proteins is required for the sporophyte formation and life cycle completion in P. patens. Furthermore, one of the Arabidopsis XLG proteins, XLG2, and the canonical Gβ protein AGB1 can functionally complement the P. patens mutant phenotypes. These data provide new insights in the evolutionary breadth and the spectrum of signaling pathways regulated by G-proteins in plants.  相似文献   

8.
Archaea have inhabited the earth for a long period of time and are ubiquitously distributed in diverse environments. However, few studies have focused on the interactions of archaea with other organisms, including eukaryotes such as plants, since it is difficult to cultivate sufficient numbers of archaeal cells for analysis. In this study, we investigated the interaction between soil archaea and Arabidopsis thaliana. We demonstrate for the first time that soil archaea promote plant growth and trigger induced systemic resistance (ISR) against the necrotrophic bacterium Pectobacterium carotovorum subsp. carotovorum SCC1 and biotrophic bacterium Pseudomonas syringae pv. tomato DC3000. Ammonia-oxidizing archaeon Nitrosocosmicus oleophilus MY3 cells clearly colonized the root surface of Arabidopsis plants, and increased resistance against both pathogenic species via the salicylic acid-independent signalling pathway. This mechanism of bacterial resistance resembles that underlying soil bacteria- and fungi-mediated ISR signalling. Additionally, volatile emissions from N. oleophilus MY3 were identified as major archaeal determinants that elicit ISR. Our results lay a foundation for archaea–plant interactions as a new field of research.  相似文献   

9.
10.
11.
A strain of Pseudomonas syringae was recently identified as the cause of a new foliar blight of impatiens. The bacterium was resistant to copper compounds, which are used on a variety of crops for bacterial and fungal disease control. The bacterium contained a single 47-kilobase plasmid (pPSI1) that showed homology to a copper resistance operon previously cloned and characterized from P. syringae pv. tomato plasmid pPT23D (D. Cooksey, Appl. Environ. Microbiol. 53:454-456, 1987). pPSI1 was transformed by electroporation into a copper-sensitive P. syringae strain, and the resulting transformants were copper resistant. A physical map of pPSI1 was constructed, and the extent of homology to pPT23D outside the copper resistance operon was determined in Southern hybridizations. The two plasmids shared approximately 20 kilobases of homologous DNA, with the remainder of each plasmid showing no detectable homology. The homologous regions hybridized strongly, but there was little or no conservation of restriction enzyme recognition sites.  相似文献   

12.
Calcium-dependent protein kinases are important decoders of calcium signals in plants, which are involved in plant immunity. We report isolation and functional characterization of a pathogen-responsive OsCPK20 gene in rice. The expression of OsCPK20 in rice was significantly induced following treatment with a Magnaporthe grisea elicitor. Overexpression of constitutively active OsCPK20 in Arabidopsis enhanced the resistance to infection with Pseudomonas syringae pv. tomato, associated with elevated expression of both SA- and JA-related defense genes. Similarly, transgenic rice plants containing constitutively active OsCPK20 exhibited enhanced resistance to blast fungus M. grisea. The enhanced resistance in the transgenic Arabidopsis and rice was associated with activated expression of both SA- and JA-related defense genes. We also found that OsCPK20 was significantly induced by drought stress, indicating that OsCPK20 might be involved in plant response to drought stress. Taken together, our results indicate that rice OsCPK20 positively regulates Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against M. grisea, and that it may enhance disease resistance by activating both SA- and JA-dependent defense responses.  相似文献   

13.
Inoculation of leaves of Arabidopsis thaliana (L.) Heynh. with the wheat pathogen, Pseudomonas syringae pv syringae, resulted in the expression of the hypersensitive reaction and in phytoalexin accumulation. No phytoalexin accumulation was detected after infiltration of leaves with a mutant of P. s. syringae deficient in the ability to elicit a hypersensitive reaction; with the crucifer pathogen, Xanthomonas campestris pv campestris; or with 10 millimolar potassium phosphate buffer (pH 6.9). Phytoalexin accumulation was correlated with the restricted in vivo growth of P. s. syringae. A phytoalexin was purified by a combination of reverse phase flash chromatography, thin layer chromatography, followed by reverse phase high performance liquid chromatography. The Arabidopsis phytoalexin was identified as 3-thiazol-2′-yl-indole on the basis of ultraviolet, infrared, mass spectral, 1H-nuclear magnetic resonance, and 13C-nuclear magnetic resonance data.  相似文献   

14.
15.
Almost all of the chlorine-containing gas emitted from natural sources is methyl chloride (CH3Cl), which contributes to the destruction of the stratospheric ozone layer. Tropical and subtropical plants emit substantial amounts of CH3Cl. A gene involved in CH3Cl emission from Arabidopsis was previously identified and designated HARMLESS TO OZONE LAYER (hereafter AtHOL1) based on the mutant phenotype. Our previous studies demonstrated that AtHOL1 and its homologs, AtHOL2 and AtHOL3, have S-adenosyl-l-methionine-dependent methyltransferase activities. However, the physiological functions of AtHOLs have yet to be elucidated. In the present study, our comparative kinetic analyses with possible physiological substrates indicated that all of the AtHOLs have low activities toward chloride. AtHOL1 was highly reactive to thiocyanate (NCS), a pseudohalide, synthesizing methylthiocyanate (CH3SCN) with a very high kcat/Km value. We demonstrated in vivo that substantial amounts of NCS were synthesized upon tissue damage in Arabidopsis and that NCS was largely derived from myrosinase-mediated hydrolysis of glucosinolates. Analyses with the T-DNA insertion Arabidopsis mutants (hol1, hol2, and hol3) revealed that only hol1 showed increased sensitivity to NCS in medium and a concomitant lack of CH3SCN synthesis upon tissue damage. Bacterial growth assays indicated that the conversion of NCS into CH3SCN dramatically increased antibacterial activities against Arabidopsis pathogens that normally invade the wound site. Furthermore, hol1 seedlings showed an increased susceptibility toward an Arabidopsis pathogen, Pseudomonas syringae pv. maculicola. Here we propose that AtHOL1 is involved in glucosinolate metabolism and defense against phytopathogens. Moreover, CH3Cl synthesized by AtHOL1 could be considered a byproduct of NCS metabolism.Methyl chloride (CH3Cl) is the most abundant halohydrocarbon emitted into the atmosphere and constitutes about 17% of the chlorine currently in the stratosphere (1). CH3Cl is derived mainly from natural sources and contributes to the destruction of the stratospheric ozone layer. As the total abundance of ozone-depleting gases such as chlorofluorocarbons in the atmosphere has begun to decrease in recent years as a result of The Montreal Protocol on Substances That Deplete the Ozone Layer, the impact of CH3Cl emission from natural sources will become greater on the atmospheric chemistry. CH3Cl emission into the atmosphere has been estimated at 1,700–13,600 Gg/year (1), which underscores the great uncertainty of the estimation. Oceans (2), biomass burning (3), wood-rotting fungi, and coastal salt marshes (4) are the major sources of CH3Cl production. Recently, it was reported that large amounts of CH3Cl are emitted from tropical and subtropical plants, which are hence considered as the major sources of CH3Cl (57). It was estimated that the CH3Cl emission from tropical plants could account for 30–50% of the global CH3Cl emission (8). To accomplish an accurate estimation of CH3Cl production in the atmosphere through “bottom-up” approaches, elucidating the mechanisms and physiological functions of CH3Cl emission from plants will be important.The biological synthesis of methyl halides has been demonstrated mainly by biochemical analyses. The enzymatic activities that transfer a methyl group from S-adenosyl-l-methionine (SAM)2 to halide ions (Cl, Br, I), which synthesize methyl halides, were first discovered in cell-free extracts of Phellinus pomaceus (a white rot fungus), Endocladia muricata (a marine red alga), and Mesembryanthemum crystallinum (ice plant, a halophytic plant) (9). Enzyme purification and cDNA cloning of the methyl chloride transferase (MCT) was first reported with Batis maritima, a halophytic plant that grows abundantly in salt marshes. As high concentrations of ions such as Cl are often detrimental to plants, halophytic plants are considered to possess various salt tolerance mechanisms. MCT was hypothesized to control and regulate the internal concentration of Cl, rich in the habitat in which halophytic plant grows (10, 11).In the meantime, purification of thiol methyltransferase (TMT), which methylates bisulfide (HS) and halide (Cl, Br, I) ions was reported with cabbage, Brassica oleracea (12). The purified and recombinant TMTs were later shown to also methylate the thiocyanate ion (NCS), which is called pseudohalide because of its chemical properties similar to halide ions (13, 14). NCS is a hydrolysis product found in some glucosinolates, which are secondary metabolites found mainly in the order Brassicales including the model plant Arabidopsis thaliana (15). Upon tissue damage such as by insect or herbivore attack, glucosinolates are hydrolyzed by myrosinase (β-thioglucosidase) into biologically active compounds including isothiocyanates. Isothiocyanates derived from indole glucosinolates and 4-hydroxybenzyl glucosinolates are reported to be highly unstable and yield NCS upon reacting with various nucleophiles (1517). Based on the enzymatic activity, the physiological role of TMT was speculated to metabolize glucosinolate breakdown products (14). However, there are no reported studies that examine these MCT and TMT hypotheses through in vivo experiments.An Arabidopsis homolog of MCT was also identified, and its T-DNA insertion Arabidopsis mutants were analyzed (18). Because the gene disruption eliminated almost all of the methyl halide emissions from the mutants, the gene was revealed to be involved in methyl halide synthesis and was designated HOL (HARMLESS TO OZONE LAYER; denoted as AtHOL1 in our studies) based on the mutant phenotype (18). Recently, we identified AtHOL1 homologs AtHOL2 and AtHOL3 in Arabidopsis, and we demonstrated biochemically that the three recombinant AtHOLs have SAM-dependent methyltransferase activities (19). In this study, reverse genetic and biochemical analyses of all AtHOL isoforms revealed that AtHOL1 in vivo is involved in the methylation of NCS produced by glucosinolate hydrolysis. Although there are several studies that have examined the biological activities of glucosinolate hydrolysis products, the mechanisms of NCS synthesis and its methylation to methyl thiocyanate (CH3SCN) have yet to be reported in detail. The biological activity and physiological function of CH3SCN synthesized by AtHOL1 was also examined.  相似文献   

16.
Age-related resistance (ARR) has been observed in a number of plant species; however, little is known about the biochemical or molecular mechanisms involved in this response. Arabidopsis becomes more resistant, or less susceptible, to virulent Pseudomonas syringae (pv tomato or maculicola) as plants mature (in planta bacterial growth reduction of 10- to 100-fold). An ARR-like response also was observed in response to certain environmental conditions that accelerate Arabidopsis development. ARR occurs in the Arabidopsis mutants pad3-1, eds7-1, npr1-1, and etr1-4, suggesting that ARR is a distinct defense response, unlike the induced systemic resistance or systemic acquired resistance responses. However, three salicylic acid (SA) accumulation-deficient plant lines, NahG, sid1, and sid2, did not exhibit ARR. A heat-stable antibacterial activity was detected in intercellular washing fluids in response to Pst inoculation in wild-type ARR-competent plants but not in NAHG: These data suggest that the ability to accumulate SA is necessary for the ARR response and that SA may act as a signal for the production of the ARR-associated antimicrobial compound(s) and/or it may possess direct antibacterial activity against P. syringae.  相似文献   

17.
18.
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号