首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lai D  Sakkas D  Huang Y 《RNA (New York, N.Y.)》2006,12(8):1446-1449
Loss of fragile X mental retardation protein, FMRP, causes the fragile X syndrome. Highly expressed in the brain and testis, FMRP has been implicated in the transport and translation of specific mRNAs. Here we show that FMRP and the mRNA nuclear export factor NXF2 co-express in the mouse male germ cells and hippocampal neurons and that FMRP associates with NXF2 but not with its close relative NXF1. We thus hypothesize that FMRP and NXF2 may act in concert to promote the nucleocytoplasmic transport of specific mRNAs in male germ cells and neurons.  相似文献   

3.
4.
New insights into fragile X syndrome: from molecules to neurobehaviors   总被引:6,自引:0,他引:6  
Fragile X syndrome - a common form of inherited mental retardation - is caused by the loss of the fragile X mental retardation 1 protein (FMRP). FMRP is an RNA-binding protein which forms a messenger ribonucleoprotein (mRNP) complex that associates with translating polyribosomes. It has been proposed that FMRP is involved in synaptic plasticity through the regulation of mRNA transportation and translation. Recent advances in the identification of the mRNA ligands that are bound by FMRP, the RNA sequence and structure required for FMRP-RNA interaction, and the physiological consequences of FMRP deficiency in the brain are important steps towards understanding the molecular pathogenesis of fragile X syndrome, and learning and memory in general.  相似文献   

5.
FMRP蛋白6种异构体与FXR1蛋白间的相互作用   总被引:1,自引:0,他引:1  
脆性X综合征是最常见的遗传性智力低下疾病,其致病基因FMR1存在复杂的选择剪接.FMR1基因的功能及其选择剪接的生物学意义尚未阐明.FMR1蛋白(FMRP)与脆性X相关蛋白1(FXR1)可形成异源二聚体.采用酵母双杂交体系研究了由FMR1第12、14、15外显子不同选择剪接方式产生的6种FMRP异构体与FXR1蛋白的相互作用,以期从蛋白质相互作用的角度探讨FMR1基因选择剪接表达的生物学意义.结果表明各种异构体与FXR1相互作用的强度随异构体蛋白肽链长度的增长而减弱.外显子12、14、15的选择剪接虽然不能开关式控制FMRP与FXR1的相互作用,但其C端亲水区在一定程度上影响相互作用的强弱.提示选择剪接对FMRP与FXR1异源二聚体的稳定性产生影响.  相似文献   

6.
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5′-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA.  相似文献   

7.
8.
Rackham O  Brown CM 《The EMBO journal》2004,23(16):3346-3355
Protein expression depends significantly on the stability, translation efficiency and localization of mRNA. These qualities are largely dictated by the RNA-binding proteins associated with an mRNA. Here, we report a method to visualize and localize RNA-protein interactions in living mammalian cells. Using this method, we found that the fragile X mental retardation protein (FMRP) isoform 18 and the human zipcode-binding protein 1 ortholog IMP1, an RNA transport factor, were present on common mRNAs. These interactions occurred predominantly in the cytoplasm, in granular structures. In addition, FMRP and IMP1 interacted independently of RNA. Tethering of FMRP to an mRNA caused IMP1 to be recruited to the same mRNA and resulted in granule formation. The intimate association of FMRP and IMP1 suggests a link between mRNA transport and translational repression in mammalian cells.  相似文献   

9.
10.
Fragile X syndrome, the most prevalent inheritable mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP) expression. FMRP is an RNA-binding protein with nucleo-cytoplasmic shuttle activity, proposed to act as a translation regulator of specific mRNAs in the brain. It has been shown that FMRP uses its arginine-glycine-glycine (RGG) box domain to bind a subset of mRNA targets that form a G-quadruplex structure. FMRP has also been shown to undergo the post-translational modifications of arginine methylation and phosphorylation, as well as alternative splicing, resulting in multiple isoforms. The alternative splice isoforms investigated in this study, isoform 1 (ISO1), isoform 2 (ISO2), and isoform 3 (ISO3), are created by the alternative splicing acceptor site at exon 15. FMRP ISO2 and ISO3 are truncated by 12 and 13 residues, respectively, relative to the longest FMRP isoform ISO1. These truncations, which are in the close proximity of the RGG box domain, preserve the integrity of the RGG box in all three isoforms, but eliminate the in vivo phosphorylation sites, present only on FMRP ISO1. We have expressed and purified recombinant FMRP ISO1, ISO2 and ISO3 in Escherichia coli, free of post-translational modifications, and by using fluorescence spectroscopy, we show that each FMRP isoform binds G-quadruplex RNA, albeit with different binding affinities, suggesting that naturally occurring sequence modifications in the proximity of the RGG box modulate its G-quadruplex RNA binding ability.  相似文献   

11.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

12.
Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A. Further, the loss of hippocampal S6K1 and the subsequent absence of phospho-FMRP mimic FMRP loss in the increased expression of SAPAP3, a synapse-associated FMRP target mRNA. Together these data reveal a S6K1-PP2A signaling module regulating FMRP function and place FMRP phosphorylation in the mGluR-triggered signaling cascade required for protein-synthesis-dependent synaptic plasticity.  相似文献   

13.
The function of local protein synthesis in synaptic plasticity and its dysregulation in fragile X syndrome (FXS) is well studied, however the contribution of regulated mRNA transport to this function remains unclear. We report a function for the fragile X mental retardation protein (FMRP) in the rapid, activity-regulated transport of mRNAs important for synaptogenesis and plasticity. mRNAs were deficient in glutamatergic signaling-induced dendritic localization in neurons from Fmr1 KO mice, and single mRNA particle dynamics in live neurons revealed diminished kinesis. Motor-dependent translocation of FMRP and cognate mRNAs involved the C terminus of FMRP and kinesin light chain, and KO brain showed reduced kinesin-associated mRNAs. Acute suppression of FMRP and target mRNA transport in WT neurons resulted in altered filopodia-spine morphology that mimicked the FXS phenotype. These findings highlight a mechanism for stimulus-induced dendritic mRNA transport and link its impairment in a mouse model of FXS to altered developmental morphologic plasticity.  相似文献   

14.
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.  相似文献   

15.
Fragile X mental retardation protein (FMRP) is encoded by Fmr1 gene in which mutation is known to cause fragile X syndrome characterized by mental impairment and other psychiatric symptoms similar to autism spectrum disorders. FMRP plays important roles in cellular mRNA biology such as transport, stability, and translation as an RNA-binding protein. In the present study, we identified potential role of FMRP in the neural differentiation, using cortical neural progenitor cells from Sprague–Dawley rat. We newly found NeuroD1, an essential regulator of glutamatergic neuronal differentiation, as a new mRNA target interacting with FMRP in co-immunoprecipitation experiments. We also identified FMRP as a regulator of neuronal differentiation by modulating NeuroD1 expression. Down-regulation of FMRP by siRNA also increased NeuroD1 expression along with increased pre- and post-synaptic development of glutamatergic neuron, as evidenced by Western blot and immunocytochemistry. On the contrary, cells harboring FMRP over-expression construct showed decreased NeuroD1 expression. Treatment of cultured neural precursor cells with a histone deacetylase inhibitor, valproic acid known as an inducer of hyper-glutamatergic neuronal differentiation, down-regulated the expression of FMRP, and induced NeuroD1 expression. Our study suggests that modulation of FMRP expression regulates neuronal differentiation by interaction with its binding target mRNA, and provides an example of the gene and environmental interaction regulating glutamatergic neuronal differentiation.  相似文献   

16.
BACKGROUND: Small nuclear ribonucleoproteins (snRNPs), which are essential components of the mRNA splicing machinery, comprise small nuclear RNAs, each complexed with a set of proteins. An early event in the maturation of snRNPs is the binding of the core proteins - the Sm proteins - to snRNAs in the cytoplasm followed by nuclear import. Immunolabelling with antibodies against Sm proteins shows that splicing snRNPs have a complex steady-state localisation within the nucleus, the result of the association of snRNPs with several distinct subnuclear structures. These include speckles, coiled bodies and nucleoli, in addition to a diffuse nucleoplasmic compartment. The reasons for snRNP accumulation in these different structures are unclear. RESULTS: When mammalian cells were microinjected with plasmids encoding the Sm proteins B, D1 and E, each tagged with either the green fluorescent protein (GFP) or yellow-shifted GFP (YFP), a pulse of expression of the tagged proteins was observed. In each case, the newly synthesised GFP/YFP-labelled snRNPs accumulated first in coiled bodies and nucleoli, and later in nuclear speckles. Mature snRNPs localised immediately to speckles upon entering the nucleus after cell division. CONCLUSIONS: The complex nuclear localisation of splicing snRNPs results, at least in part, from a specific pathway for newly assembled snRNPs. The data demonstrate that the distribution of snRNPs between coiled bodies and speckles is directed and not random.  相似文献   

17.
Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds tightly to recombinant human FMRP in vitro. Binding depended on protein determinants located primarily in the C-terminal end of hFMRP, but the hnRNP K homology domain influenced binding as well. When hFMRP was expressed in cultured cells, it dramatically reduced endogenous EF-1A protein expression but had no effect on EF-1A mRNA levels. In contrast, the translation of several other mRNAs, including those coding for dynamin and constitutive heat shock 70 protein, was not affected by the hFMRP expression. Most importantly, EF-1A mRNA and hFMR1 mRNA were coimmunoprecipitated with hFMRP. Finally, in fragile X lymphoblastoid cells in which hFMRP is absent, human EF-1A protein but not its corresponding mRNA is elevated compared with normal lymphoblastoid cells. These data suggest that hFMRP binds to EF-1A mRNA and also strongly argue that FMRP negatively regulates EF-1A expression in vivo.  相似文献   

18.
19.
The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in the mRNA metabolism. The absence of FMRP in neurons leads to alterations of the synaptic plasticity, probably as a result of translation regulation defects. The exact molecular mechanisms by which FMRP plays a role in translation regulation have remained elusive. The finding of an interaction between FMRP and the RNA interference silencing complex (RISC), a master of translation regulation, has suggested that both regulators could be functionally linked. We investigated here this link, and we show that FMRP exhibits little overlap both physically and functionally with the RISC machinery, excluding a direct impact of FMRP on RISC function. Our data indicate that FMRP and RISC are associated to distinct pools of mRNAs. FMRP, unlike RISC machinery, associates with the pool of mRNAs that eventually goes into stress granules upon cellular stress. Furthermore, we show that FMRP plays a positive role in this process as the lack of FMRP or a point mutant causing a severe fragile X alter stress granule formation. Our data support the proposal that FMRP plays a role in controlling the fate of mRNAs after translation arrest.  相似文献   

20.
The (CGG)n-repeat in the 5′-untranslated region of the fragile X mental retardation gene (FMR1) gene is polymorphic and may become unstable on transmission to the next generation. In fragile X syndrome, CGG repeat lengths exceed 200, resulting in silencing of FMR1 and absence of its protein product, fragile X mental retardation protein (FMRP). CGG repeat lengths between 55 and 200 occur in fragile X premutation (FXPM) carriers and have a high risk of expansion to a full mutation on maternal transmission. FXPM carriers have an increased risk for developing progressive neurodegenerative syndromes and neuropsychological symptoms. FMR1 mRNA levels are elevated in FXPM, and it is thought that clinical symptoms might be caused by a toxic gain of function due to elevated FMR1 mRNA. Paradoxically, FMRP levels decrease moderately with increasing CGG repeat length in FXPM. Lowered FMRP levels may also contribute to the appearance of clinical problems. We previously reported increases in regional rates of cerebral protein synthesis (rCPS) in the absence of FMRP in an Fmr1 knockout mouse model and in a FXPM knockin (KI) mouse model with 120 to 140 CGG repeats in which FMRP levels are profoundly reduced (80%–90%). To explore whether the concentration of FMRP contributes to the rCPS changes, we measured rCPS in another FXPM KI model with a similar CGG repeat length and a 50% reduction in FMRP. In all 24 brain regions examined, rCPS were unaffected. These results suggest that even with 50% reductions in FMRP, normal protein synthesis rates are maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号