首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Endoglucanase production was carried out using in-house isolate Aspergillus terreus on rice straw under solid state fermentation. An increase of 1.25-fold endoglucanase production was obtained under optimized conditions using response surface methodology. The enzyme was purified to homogeneity by gel filtration chromatography. Its molecular weight was determined as 28.18 kDa by gel filtration and 29.13 kDa on SDS-PAGE. The enzyme displayed maximum activity at 50 °C and pH 4.8. It was stable for 240 min at 50 °C and 120 min at 60 °C but rapidly inactivated at 70 °C. The purified enzyme was specific towards carboxymethyl-cellulose but showed no activity for cellobiose or xylan. Maximum velocity (Vmax) and KM were 16.15 μmol min−1 mg−1 and 12.01 mg ml−1, respectively. AgNO3, KCl, NaCl, and MnSO4 were found to inhibit enzyme activity while CaCl2 and ZnSO4 activated the enzyme. Internal peptide mass fingerprinting analysis identified that the protein belongs to GH12 superfamily endoglucanases. External supplementation of the purified enzyme to the crude cellulase showed 38.7% increase in saccharification efficiency of the delignified rice straw compared to the crude cellulase alone. The results demonstrated that the addition of GH 12 family purified endoglucanase to the crude cellulase can efficiently convert lignocellulosic biomass to fermentable sugars.  相似文献   

2.
3.
Zhou  Junpei  Song  Zhifeng  Zhang  Rui  Chen  Caihong  Wu  Qian  Li  Junjun  Tang  Xianghua  Xu  Bo  Ding  Junmei  Han  Nanyu  Huang  Zunxi 《Extremophiles : life under extreme conditions》2017,21(4):699-709

β-N-Acetylglucosaminidases (GlcNAcases) are important for many biological functions and industrial applications. In this study, a glycoside hydrolase family 20 GlcNAcase from Shinella sp. JB10 was expressed in Escherichia coli BL21 (DE3). Compared to many GlcNAcases, the purified recombinant enzyme (rJB10Nag) exhibited a higher specificity activity (538.8 µmol min−1 mg−1) or V max (1030.0 ± 82.1 µmol min−1 mg−1) toward p-nitrophenyl β-N-acetylglucosaminide and N,N′-diacetylchitobiose (specificity activity of 35.4 µmol min−1 mg−1) and a higher N-acetylglucosaminide tolerance (approximately 50% activity in 70.0 mM N-acetylglucosaminide). The degree of synergy on enzymatic degradation of chitin by a commercial chitinase and rJB10Nag was as high as 2.35. The enzyme was tolerant to most salts, especially 3.0–15.0% (w/v) NaCl and KCl. These biochemical characteristics make the JB10 GlcNAcase a candidate for use in many potential applications, including processing marine materials and the bioconversion of chitin waste. Furthermore, the enzyme has the highest proportions of alanine (16.5%), glycine (10.5%), and random coils (48.8%) with the lowest proportion of α-helices (24.9%) among experimentally characterized GH 20 GlcNAcases from other organisms.

  相似文献   

4.
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively, for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K m and V max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance against protease.  相似文献   

5.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

6.
A β-mannanase gene, designated as man5S27, was cloned from Streptomyces sp. S27 using the colony polymerase chain reaction (PCR) method and expressed in Escherichia coli BL21 (DE3). The open reading frame consisted of 1,161 bp and encoded a 386-amino-acid polypeptide (Man5S27) with calculated molecular mass of 37.2 kDa. The encoded protein comprised a putative 38-residue signal peptide, a family 5 glycoside hydrolase domain, and a family 10 carbohydrate-binding module. Purified recombinant Man5S27 had high specific activity of 2,107 U mg−1 and showed optimal activity at pH 7.0 and 65°C. The enzyme remained stable at pH 5.0–9.0 and had good thermostability at 50°C. The K m values for locust bean gum and konjac flour were 0.16 and 0.41 mg ml−1, with V max values of 3,739 and 1,653 μmol min−1 mg−1, respectively. Divalent metal ions such as Mn2+, Zn2+, Ca2+, Pb2+, and Fe2+ enhanced the enzyme activity, but Ag+ and Hg2+ strongly inhibited the activity. Man5S27 also showed resistance to various neutral proteases (retaining >95% activity after proteolytic treatment for 2 h).  相似文献   

7.
8.

A novel gene (ANK58566) encoding a cold-active α-amylase was cloned from marine bacterium Bacillus sp. dsh19-1 (CCTCC AB 2015426), and the protein was expressed in Escherichia coli. The gene had a length of 1302 bp and encoded an α-amylase of 433 amino acids with an estimated molecular mass of 50.1 kDa. The recombinant α-amylase (AmyD-1) showed maximum activity at 20 °C and pH 6.0, and retained about 35.7% of activity at 4 °C. The AmyD-1 activity was stimulated by Ca2+ and Na+. However, the chelating agent, EDTA, inactivated the enzyme. Moreover, AmyD-1 displayed extreme salt tolerance, with the highest activity in the presence of 2.0 M NaCl and 60.5% of activity in 5.0 M NaCl. The Km, Vmax and kcat of AmyD-1 in 2.0 M NaCl were 2.8 mg ml−1, 21.8 mg ml−1 min−1 and 933.5 s−1, respectively, at 20 °C and pH 6.0 with soluble starch as substrate. MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) revealed that the end products of starch hydrolysis by AmyD-1 were glucose, maltose, maltotriose, maltotetraose, and malt oligosaccharides. Thus, AmyD-1 is one of the very few α-amylases that can tolerate low temperatures and high salt concentrations, which makes it to be a potential candidate for research in basic and applied microbiology.

  相似文献   

9.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

10.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

11.
An extracellular xylanase enzyme fraction A from a mesophilicClostridium strain SAIV was purified by ammonium sulfate precipitation, Sephadex G-50 gel filtration and DEAE-Sephadex A-50 ion exchange. The xylanase exhibited a molecular weight of 30,000 and it was stable upto 55° C with an optimum temperature of 50° C. It was most stable between pH 5–7, with an optimum pH of around 6. The Km value was 7.0 mg·xylan ml-1 and Vmax was 36 mol·xylose liberated mg-1 min-1. Carboxymethyl cellulose, filter paper cellulose and 4-p-nitrophenyl -D-xylopyranoside were not hydrolysed. The specific activity of xylanase fraction A (9.8 U mg-1) is 2–10 fold higher than the specific activity of xylanase in other mesophilic, xylanolytic, obligate anaerobic bacteria. A minor fraction of xylanase activity designated as xylanase B was also obtained supporting the view that the multiplicity of xylanases is common in microorganisms.  相似文献   

12.
A rumen simulation technique (RUSITEC) apparatus with eight 940 ml fermentation vessels was used to study the effects of the steroidal saponins in Yucca schidigera extract (YE) on ruminal microbial activity and saponin degradation. The YE contained approximately 4.4% (w/w) saponin, as smilagenin equivalents, and was included at 0 (control) or 0.5 mg ml−1 (n=4) in the McDougall's buffer infused continuously into the vessels (dilution rate=0.75 day−1). Each vessel received 5 g chopped alfalfa hay and 5 g concentrate (as-fed basis) daily for 22 days. Ammonia concentrations were lower (P<0.05) in effluent from vessels receiving YE than from controls for the first half of the study, but did not differ thereafter. Total amounts of VFA in effluent were not affected (P>0.05) by YE, but molar proportions of iso-butyric and iso-valeric acids were lower (P<0.05) in the YE vessels than in the controls in the first half of the experiment. Yucca extract at 0.5 mg ml−1 did not affect (P>0.05) dry matter disappearance (DMD) from hay or from concentrate, nor did it affect total gas or methane production, or bacterial numbers (total or cellulolytic populations) in homogenates prepared from fermenter vessel liquid and feed particles. Protozoal numbers in the homogenates were substantially reduced (P<0.01) by YE (at 0.5 mg ml−1), protease activity was increased (P<0.05), deaminase activity and activity against Ala2 were unaffected (P>0.05) and activity against Ala5 was reduced by 25% (P>0.05). When the homogenates from control and YE-supplemented (0.5 mg ml−1) vessels were used to inoculate roll tubes containing 0 or 5 mg ml−1 of YE, fewer colonies developed (P<0.01) in roll tubes containing YE than in those without YE, irrespective of the source of inoculum. Homogenates were also assayed for saponin degradation and for protease, peptidase and deaminase activities. Inoculum from the vessels receiving YE degraded saponin slightly during a 2 h incubation. Yucca extract at 0.5 mg ml−1 altered proteolytic activity and reduced protozoal numbers, but did not affect DMD or bacterial activity, and did not induce resistance to YE at a concentration of 5 mg ml−1.  相似文献   

13.
We cloned and sequenced a xylanase gene named xylD from the acidophilic fungus Bispora sp. MEY-1 and expressed the gene in Pichia pastoris. The 1,422-bp full-length complementary DNA fragment encoded a 457-amino acid xylanase with a calculated molecular mass of 49.8 kDa. The mature protein of XYLD showed high sequence similarity to both glycosyl hydrolase (GH) families 5 and 30 but was more homologous to members of GH 30 based on phylogenetic analysis. XYLD shared the highest identity (49.9%) with a putative endo-1,6-β-d-glucanase from Talaromyces stipitatus and exhibited 21.1% identity and 34.3% similarity to the well-characterized GH family 5 xylanase from Erwinia chrysanthemi. Purified recombinant XYLD showed maximal activity at pH 3.0 and 60 °C, maintained more than 60% of maximal activity when assayed at pH 1.5–4.0, and had good thermal stability at 60 °C and remained stable at pH 1.0–6.0. The enzyme activity was enhanced in the presence of Ni2+ and β-mercaptoethanol and inhibited by some metal irons (Hg2+, Cu2+, Pb2+, Mn2+, Li+, and Fe3+) and sodium dodecyl sulfate. The specific activity of XYLD for beechwood xylan, birchwood xylan, 4-O-methyl-d-glucuronoxylan, and oat spelt xylan was 2,463, 2,144, 2,020, and 1,429 U mg−1, respectively. The apparent K m and V max values for beechwood xylan were 5.6 mg ml−1 and 3,622 μmol min−1 mg−1, respectively. The hydrolysis products of different xylans were mainly xylose and xylobiose.  相似文献   

14.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

15.
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K m and V max of 1.6 mg ml−1 and 118 μmol min−1 mg−1 on oat spelt xylan, and its optimal temperature and pH for activity were 37°C and pH 6.0, respectively. Its catalytic properties (k cat/K m = 3,300 ml mg−1 min−1) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.  相似文献   

16.
A new cellulolytic strain of Chryseobacterium genus was screened from the dung of a cattle fed with cereal straw. A putative cellulase gene (cbGH5) belonging to glycoside hydrolase family 5 subfamily 46 (GH5_46) was identified and cloned by degenerate PCR plus genome walking. The CbGH5 protein was overexpressed in Pichia pastoris, purified and characterized. It is the first bifunctional cellulase–xylanase reported in GH5_46 as well as in Chryseobacterium genus. The enzyme showed an endoglucanase activity on carboxymethylcellulose of 3237 μmol min?1 mg?1 at pH 9, 90 °C and a xylanase activity on birchwood xylan of 1793 μmol min?1 mg?1 at pH 8, 90 °C. The activity level and thermophilicity are in the front rank of all the known cellulases and xylanases. Core hydrophobicity had a positive effect on the thermophilicity of this enzyme. When similar quantity of enzymatic activity units was applied on the straws of wheat, rice, corn and oilseed rape, CbGH5 could obtain 3.5–5.0× glucose and 1.2–1.8× xylose than a mixed commercial cellulase plus xylanase of Novozymes. When applied on spent mushroom substrates made from the four straws, CbGH5 could obtain 9.2–15.7× glucose and 3.5–4.3× xylose than the mixed Novozymes cellulase+xylanase. The results suggest that CbGH5 could be a promising candidate for industrial lignocellulosic biomass conversion.  相似文献   

17.
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. d-Amino acid dehydrogenase is a flavoenzyme that digests free neutral d-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 d-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial d-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to d-proline. The enzyme mediated electron transport from d-proline to coenzyme Q1, thus distinguishing it from d-amino acid oxidase. The apparent K m and V max values were 40.2 mM and 25.0 μmol min−1 mg−1, respectively, for dehydrogenation of d-proline, and were 8.2 μM and 12.3 μmol min−1 mg−1, respectively, for reduction of Q1. The respective pH and temperature optima were 8.0 and 37°C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian d-amino acid oxidase than other bacterial d-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from d-proline to a c-type cytochrome was suggested spectrophotometrically.  相似文献   

18.
β-galactosidase is an enzyme administered as a digestive supplement to treat lactose intolerance, a genetic condition prevalent in most world regions. The gene encoding an acid-stable β-galactosidase potentially suited for use as a digestive supplement was cloned from Aspergillus niger van Tiegh, sequenced and expressed in Pichia pastoris. The purified recombinant protein exhibited kinetic properties similar to those of the native enzyme and thus was also competitively inhibited by its product, galactose, at application-relevant concentrations. In order to alleviate this product inhibition, a model of the enzyme structure was generated based on a Penicillium sp. β-galactosidase crystal structure with bound β-galactose. This led to targeted mutagenesis of an Asp258-Ser-Tyr-Pro-Leu-Gly-Phe amino acid motif in the A. niger van Tiegh enzyme and isolation from the resultant library of a mutant β-galactosidase enzyme with reduced sensitivity to inhibition by galactose (K i of 6.46 mM galactose, compared with 0.76 mM for the wildtype recombinant enzyme). The mutated enzyme also exhibited an increased K m (3.76 mM compared to 2.21 mM) and reduced V max (110.8 μmol min−1 mg−1 compared to 172.6 μmol min−1 mg−1) relative to the wild-type enzyme, however, and its stability under simulated fasting gastric conditions was significantly reduced. The study nevertheless demonstrates the potential to rationally engineer the A. niger van Tiegh enzyme to relieve product inhibition and create mutants with improved, application-relevant kinetic properties for treatment of lactose intolerance.  相似文献   

19.
A new xylanase gene, named xyn186, was cloned by the genome-walking PCR method from the Alternaria sp. HB186. The sequence of xyn186 contains a 748 bp open reading frame separated by one intron with the size of 52 bp. The cDNA was obtained by DpnI-mediated intron deletion. The cDNA was cloned into pHBM905A and transformed into Pichia pastoris GS115 to screen xylanase-secreting transformants on RBB-xylan plates. The molecular mass of the enzyme was estimated to be 23 kDa on SDS-PAGE. The optimal pH and temperature of the purified enzyme is 6 and 50°C, respectively. The K m and V max valued for birchwood xylan are 1.404 mg ml−1 and 0.2748 mmol min−1 mg−1, respectively. The inhibitory effects of various metal ions were investigated, Cu2+ and Hg2+ ions inhibited most of the enzyme activity. The gene copy number of xyn186 in the genome of P. pastoris was estimated as two by the Real-time PCR. To date, xyn186 gene is the first xylanase gene cloned from the genus Alternaria.  相似文献   

20.
《Process Biochemistry》2010,45(1):88-93
A fibrinolytic protease (FP84) was purified from Streptomyces sp. CS684, with the aim of isolating economically viable enzyme from a microbial source. SDS-PAGE and fibrin zymography of the purified enzyme showed a single protein band of approximately 35 kDa. Maximal activity was at 45 °C and pH 7–8, and the enzyme was stable between pH 6 and 9 and below 40 °C. It exhibited fibrinolytic activity, which is stronger than that of plasmin. FP84 hydrolyzed Bβ-chains of fibrinogen, but did not cleave Aα- and γ-chains. Km, Vmax and Kcat values for azocasein were 4.2 mg ml−1, 305.8 μg min−1 mg−1 and 188.7 s−1, respectively. The activity was suppressed by Co2+, Zn2+, Cu2+ and Fe2+, but slightly enhanced by Ca2+ and Mg+2. Additionally, the activity was slightly inhibited by aprotinin and PMSF, but significantly inhibited by pefabloc, EDTA and EGTA. The first 15 amino acids of N-terminal sequence were GTQENPPSSGLDDID. They are highly similar to those of serine proteases from various Streptomyces strains, but different with known fibrinolytic enzymes. These results suggest that FP84 is a novel serine metalloprotease with potential application in thrombolytic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号