首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that combination of deferasirox and deferiprone chelators might be more efficient as combined therapy than single therapy in removing mercury from the body was considered. Male Wistar rats were exposed to mercury vapor for 2 weeks. After mercury administration some abnormal clinical signs such as red staining around the eyes, greenish mottling on the liver, weakness, loss of hair and weight, were observed in animals. Chelators were given orally after mercury vapor application for 2 weeks. Mercury toxicity symptoms in rats decreased after drug administration. After chelation therapy, these rats were anesthetized with ether vapor and immobilized by cervical dislocation and then their heart, liver, kidneys, intestine, spleen and testicles were sampled for determination of mercury and iron concentration. The combined chelation therapy results showed that these chelators are able to remove mercury from the body and toxicity symptoms decreased.  相似文献   

2.
The present research is aimed to characterize the potential efficiency of two chelators after chromium(VI) administration for 60 days following two doses of 15 and 30 mg/kg chromium(VI) per body weight daily to male rats. However, the hypothesis that the two chelators might be more efficient as combined therapy than as single therapy in removing chromium(VI) from rat organs was considered. In this way, two known chelators deferasirox and deferiprone were chosen and given orally as a single or combined therapy for a period of 1 week. Chromium(VI) and iron concentrations in tissues were determined by flame atomic absorption spectroscopy. The combined chelation therapy results show that deferasirox and deferiprone are able to remove chromium(VI) ions from various tissues while iron concentration returned to normal levels and symptoms also decreased.  相似文献   

3.
Iron chelation therapy using iron (III) specific chelators such as desferrioxamine (DFO, Desferal), deferasirox (Exjade or ICL-670), and deferiprone (Ferriprox or L1) are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection) also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.  相似文献   

4.
Orally bioavailable chelators for transfusional iron overload have been sought since the introduction of deferoxamine (Desferal) in 1962. Despite tremendous efforts, to date, only deferiprone (Ferriprox) and deferasirox (Exjade) have successfully reached the market, reflecting the difficulty to combine oral activity and safety. Owing to the risk of failure, few new oral chelators can be expected in the future for the treatment of transfusional iron overload. As iron is involved in many disease processes, deferiprone and deferasirox have been proposed to be potentially useful in a variety of indications not characterized by general iron overload. Although it may be possible to obtain clinical benefit from current compounds, more selective chelators tailored to the particular target are needed for successful intervention in these indications.  相似文献   

5.
Current iron chelation therapy consists primarily of DFO (desferrioxamine), which has to be administered via intravenous infusion, together with deferiprone and deferasirox, which are orally-active chelators. These chelators, although effective at decreasing the iron load, are associated with a number of side effects. Grady suggested that the combined administration of a smaller bidentate chelator and a larger hexadentate chelator, such as DFO, would result in greater iron removal than either chelator alone [Grady, Bardoukas and Giardina (1998) Blood 92, 16b]. This in turn could lead to a decrease in the chelator dose required. To test this hypothesis, the rate of iron transfer from a range of bidentate HPO (hydroxypyridin-4-one) chelators to DFO was monitored. Spectroscopic methods were utilized to monitor the decrease in the concentration of the Fe-HPO complex. Having established that the shuttling of iron from the bidentate chelator to DFO does occur under clinically relevant concentrations of chelator, studies were undertaken to evaluate whether this mechanism of transfer would apply to iron removal from transferrin. Again, the simultaneous presence of both a bidentate chelator and DFO was found to enhance the rate of iron chelation from transferrin at clinically relevant chelator levels. Deferiprone was found to be particularly effective at 'shuttling' iron from transferrin to DFO, probably as a result of its small size and relative low affinity for iron compared with other analogous HPO chelators.  相似文献   

6.
7.
Neuronal death in Parkinson’s disease (PD) is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2’-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH)-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.  相似文献   

8.
Iron chelators such as deferiprone, deferoxamine (DFO) and ICL670 (deferasirox) have previously been shown to display in vitro and/or in vivo antimalarial activities. To gain further insight in their antimalarial mechanism of action, their activities on inhibition of β-hematin formation and on both peroxidative and glutathione (GSH)-mediated degradation of hemin were investigated. Neither deferiprone nor DFO were able to inhibit β-hematin formation while ICL670 activity nearly matched that of chloroquine (CQ). Peroxidative degradation of hemin was also only strongly inhibited by both CQ and ICL670, the latter being significantly more efficient at pH 5.2. All iron chelators displayed minor, if any, inhibitory activity on GSH-mediated degradation of hemin. Discrepancies in the results obtained for the three iron chelators show that iron chelation is not the main driving force behind interference with heme degradation. Deferiprone, DFO and ICL670 share little structural community but both ICL670 and antimalarial ursolic acid derivatives (previously shown to block β-hematin formation and the peroxidative degradation of hemin) have hydrophobic groups and hydroxyphenyl moieties. These similarities in structures and activities further back up a possible two-step mechanism of action previously proposed for ursolic acid derivatives (Mullié et al., 2010) implying (1) stacking of an hydrophobic structure to hemin and (2) additive protection of hemin ferric iron from H2O2 by hydroxyphenyl groups through steric hindrance and/or trapping of oxygen reactive species in the direct neighborhood of ferric iron. These peculiar antimalarial mechanisms of action for ICL670 warrant further investigations and development.  相似文献   

9.
Many recent studies have shown that antioxidant compounds decrease cardiac oxidative stress, decrease cardiac iron deposition, and improve cardiac dysfunction in iron-overload induced cardiomyopathy in animal models. Interestingly, a therapy including the combination of the iron chelator deferiprone (DFP) plus the antioxidant N-acetylcysteine (NAC) has been shown to significantly decrease oxidative stress and restore heart and brain function in iron-overloaded rats. However, the cardioprotective effects of this combined DFP and NAC treatment in thalassemic mice have not been investigated. We hypothesised that the combination of DFP and NAC exerts better cardioprotection than monotherapy via decreasing cardiac iron accumulation, oxidative stress, and apoptosis in thalassemic mice. The iron-overload condition was induced in heterozygous βKO HT and wild-type mice by instigating high iron diet consumption (FE) for three months. Then, iron chelator DFP (75?mg/kg/day twice a day), antioxidant NAC (100?mg/kg/day once a day), and combined DFP plus NAC were fed via oral gavage for one month with continuous iron feeding. Left ventricular (LV) function, heart rate variability (HRV), apoptosis, and cardiac iron accumulation were determined. Chronic iron-overload in mice led to increased cardiac iron deposition, oxidative stress, apoptosis, and impaired LV function and HRV. Although DFP and NAC showed similar cardioprotective efficacy, combined DFP plus NAC exerted greater efficacy in reducing both cardiac iron deposition and cellular apoptosis than monotherapy. In conclusion, combined iron chelator and NAC treatment exert the greatest cardioprotective efficacy when compared with either of the monotherapies in iron-overload thalassemic mice.  相似文献   

10.
Ameliorative effects of few naturally occurring antioxidants like ascorbic acid (vitamin C), alpha-tocopherol (vitamin E) either alone or in combination with meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA (MiADMSA), on parameters indicative of oxidative stress in the liver, kidney, brain and blood of lead-exposed rats were studied. Male Wistar rats were exposed to 0.1% lead acetate in drinking water for 3 months and treated thereafter with DMSA or its analogue MiADMSA (50 mg/kg, intraperitoneally), either individually or in combination with vitamin E (5 mg/kg, intramuscularly) or vitamin C (25 mg/kg, orally) once daily for 5 days. The effects of these treatments in influencing the lead-induced alterations in haem synthesis pathway, hepatic, renal and brain oxidative stress and lead concentration from the soft tissues were investigated. Exposure to lead produced a significant inhibition of delta-aminolevulinic acid dehydratase (ALAD) activity from 8.44+/-0.26 in control animals to 1.76+/-0.32 in lead control, reduction in glutathione (GSH) from 3.56+/-0.14 to 2.57+/-0.25 and an increase in zinc protoporphyrin level from 62.0+/-3.9 to 170+/-10.7 in blood, suggesting altered haem synthesis pathway. Both the thiol chelators and the two vitamins were able to increase blood ALAD activity towards normal, however, GSH level responded favorably only to the two thiol chelators. The most prominent effect on blood ALAD activity was, however, observed when MiADMSA was co-administered with vitamin C (7.51+/-0.17). Lead exposure produced a significant depletion of hepatic GSH from 4.59+/-0.78 in control animals to 2.27+/-0.47 in lead controls and catalase activity from 100+/-3.4 to 22.1+/-0.25, while oxidized glutathione (GSSG; 0.34+/-0.05 to 2.05+/-0.25), thiobarbituric acid reactive substance (TBARS; 1.70+/-0.45 to 5.22+/-0.50) and glutathione peroxidase (GPx) levels (3.41+/-0.09 to 6.17+/-0.65) increased significantly, pointing to hepatic oxidative stress. Altered, reduced and oxidized GSH levels showed significant recovery after MiADMSA and DMSA administration while, vitamins E and C were effective in reducing GSSG and TBARS levels and increasing catalase activity. Administration of MiADMSA alone and the combined administration of vitamin C along with DMSA and MiADMSA were most effective in increasing hepatic GSH levels to 4.88+/-0.14, 4.09+/-0.12 and 4.30+/-0.06, respectively. Hepatic catalase also reached near normal level in animals co-administered vitamin C with DMSA or MiADMSA (82.5+/-4.5 and 84.2+/-3.5, respectively). Combined treatments with vitamins and the thiol chelators were also able to effectively reduce lead-induced decrease in renal catalase activity and increase in TBARS and GPx level. Combination therapy, however, was unable to provide an effective reversal in the altered parameters indicative of oxidative stress in different brain regions, except in catalase activity. The result also suggests a beneficial role of vitamin E when administered along with the thiol chelators (particularly with MiADMSA) in reducing body lead burden. Blood lead concentration was reduced from 13.3+/-0.11 in lead control to 0.3+/-0.01 in MiADMSA plus vitamin E-treated rats. Liver and kidney lead concentration also showed a most prominent decrease in MiADMSA plus vitamin E co-administered rats (5.29+/-0.16 to 0.63+/-0.02 and 14.1+/-0.21 to 1.51+/-0.13 in liver and kidney, respectively). These results thus suggest that vitamin C administration during chelation with DMSA/MiADMSA was significantly beneficial in reducing oxidative stress however, it had little or no additive effect on the depletion of lead compared with the effect of chelators alone. Thus, the co-administration of vitamin E during chelation treatment with DMSA or MiADMSA could be recommended for achieving optimum effects of chelation therapy.  相似文献   

11.
We synthesized and evaluated new specific tridentate iron(III) chelators of 2,6-bis[hydroxyamino]-1,3,5-triazine (BHT) family for use in iron deprivation cancer therapy. Physical properties of BHT chelators are easily customizable allowing easy penetration through cellular membranes. Antiproliferative activity of new BHT chelators was studied on MDA-MB-231 and MiaPaCa cells and compared to a clinically available new oral iron chelator, deferasirox (DFX). The antiproliferative activity of new chelators was found to correlate with iron(III) chelation ability and some of analogs showed substantially higher antiproliferative activity than DFX.  相似文献   

12.
Knowledge of the basic mechanisms involved in iron metabolism has increased greatly in recent years, improving our ability to deal with the huge global public health problems of iron deficiency and overload. Several million people worldwide suffer iron overload with serious clinical implications. Iron overload has many different causes, both genetic and environmental. The two most common iron overload disorders are hereditary haemochromatosis and transfusional siderosis, which occurs in thalassaemias and other refractory anaemias. The two most important treatment options for iron overload are phlebotomy and chelation. Phlebotomy is the initial treatment of choice in haemochromatosis, while chelation is a mainstay in the treatment of transfusional siderosis. The classical iron chelator is deferoxamine (Desferal), but due to poor gastrointestinal absorption it has to be administered intravenously or subcutaneously, mostly on a daily basis. Thus, there is an obvious need to find and develop new effective iron chelators for oral use. In later years, particularly two such oral iron chelators have shown promise and have been approved for clinical use, namely deferiprone (Ferriprox) and deferasirox (Exjade). Combined subcutaneous (deferoxamine) and oral (deferiprone) treatment seems to hold particular promise.  相似文献   

13.
Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood δ-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of iron with MiADMSA provided more pronounced depletion of blood arsenic, while no additional beneficial effects on tissue arsenic level over the individual effect of MiADMSA were noted. The results lead us to conclude that iron supplementation during chelation has some beneficial effects particularly on heme synthesis pathway and blood arsenic concentration.  相似文献   

14.
Iron is an essential factor for both the growth and virulence of most of microorganisms. As a part of the innate (or nutritional) immune system, mammals have developed different mechanisms to store and transport this element in order to limit free iron bioavailability. To survive in this hostile environment, pathogenic fungi have specific uptake systems for host iron sources, one of the most important of which is based on the synthesis of siderophores-soluble, low-molecular-mass, high-affinity iron chelators. The increase in free iron that results from iron-overload conditions is a well-established risk factor for invasive fungal infection (IFI) such as mucormycosis or aspergillosis. Therefore, iron chelation may be an appealing therapeutic option for these infections. Nevertheless, deferoxamine –the first approved iron chelator– paradoxically increases the incidence of IFI, as it serves as a xeno-siderophore to Mucorales. On the contrary, the new oral iron chelators (deferiprone and deferasirox) have shown to exert a deleterious effect on fungal growth both in vitro and in animal models. The present review focuses on the role of iron metabolism in the pathogenesis of IFI and summarises the preclinical data, as well as the limited clinical experience so far, in the use of new iron chelators as treatment for mucormycosis and invasive aspergillosis.  相似文献   

15.
The influence of altered levels of endogenous catecholamines following adrenalectomy or 6-hydroxydopamine (6-OH) treatment (alone or in combination) on enzymatic (glutathione reductase, catalase, glutathione peroxidase and Cu,Zn superoxide dismutase) and non-enzymatic (glutathione) antioxidant components of heart, liver, kidney, lung and erythrocytes in male Wistar rats was investigated. Functional antioxidant status was assessed in terms of susceptibility to t-butylhydroperoxide-induced sulfhydryl group oxidation (an indirect measure of glutathione depletion) and lipid peroxidation, as measured by thiobarbituric acid-reactive substance (TBARS) formation. Reduced levels of adrenaline and noradrenaline resulted from adrenalectomy and 6-OH treatment, respectively, while a combination of these treatments led to a reduction in the levels of both catecholamines. Adrenalectomy was associated with alterations in glutathione reductase activity in the heart and liver (increased). 6-OH treatment alone produced an elevation in glutathione reductase activity only in the heart. In adrenalectomized animals, 6-OH treatment produced no further increases in glutathione reductase activities of heart or liver. In lung, however, the combination of adrenalectomy and 6-OH treatment caused an elevation in both glutathione peroxidase and glutathione reductase activities. Glutathione levels of liver alone were elevated following adrenalectomy, while those of erythrocytes and liver (but not other tissues investigated) were increased by the combination of adrenalectomy and 6-OH treatment. The kidney was relatively resistant to the effects of sympathectomy and showed no changes in any of the antioxidant components measured. Adrenalectomy alone or in combination with 6-OH produced an increase in susceptibility to peroxide-induced sulfhydryl group oxidation only in the heart. 6-OH treatment caused a reduction in peroxide-induced TBARS formation only in the kidney. Both adrenalectomy and the combination of adrenalectomy and 6-OH treatment were associated with reduced TBARS formation in the liver, lung and kidney, but not heart. Results from this study demonstrate that the effects of sympathectomy on antioxidant status vary among tissues. Differences between adrenalectomy and 6-OH treatment on antioxidant components are suggestive of differential actions of adrenaline and noradrenaline on tissue antioxidant status which may have important implications under conditions associated with elevations in levels of these catecholamines including chronic stress and myocardial infarction.  相似文献   

16.
Two oral chelators, CP20 (deferiprone) and ICL670 (deferasirox), have been synthesized for the purpose of treating iron overload diseases, especially thalassemias. Given their antiproliferative effects resulting from the essential role played by iron in cell processes, such compounds might also be useful as anticancer agents. In the present study, we tested the impact of these two iron chelators on iron metabolism, in the HepaRG cell line which allowed us to study proliferating and differentiated hepatocytes. ICL670 uptake was greater than the CP20 uptake. The iron depletion induced by ICL670 in differentiated cells increased soluble transferrin receptor expression, decreased intracellular ferritin expression, inhibited 55Fe (III) uptake, and reduced the hepatocyte concentration of the labile iron pool. In contrast, CP20 induced an unexpected slight increase in intracellular ferritin, which was amplified by iron-treated chelator exposure. CP20 also promoted Fe(III) uptake in differentiated HepaRG cells, thus leading to an increase of both the labile pool and storage forms of iron evaluated by calcein fluorescence and Perls staining, respectively. In acellular conditions, compared to CP20, iron removing ability from the calcein-Fe(III) complex was 40 times higher for ICL670. On the whole, biological responses of HepaRG cells to ICL670 treatment were characteristic of expected iron depletion. In contrast, the effects of CP20 suggest the potential involvement of this compound in the iron uptake from the external medium into the hepatocytes from the HepaRG cell line, therefore acting like a siderophore in this cell model.  相似文献   

17.
Ferritin, which includes twenty-four light and heavy chains in varying proportions in different tissues, is primarily responsible for maintaining the body's iron metabolism. Its normal value is between 10 and 200 ngmL?1 in men and between 30 and 300 ngmL?1 in women. Iron is delivered to the tissue via them, and they act as immunomodulators, signaling molecules, and inflammatory markers. When ferritin level exceeds 1000 µgL-1, the patient is categorized as having hyperferritinemia. Iron chelators such as deferiprone, deferirox, and deferoxamine are currently FDA approved to treat iron overload. The inflammation cascade and poor prognosis of COVID-19 may be attributed to high ferritin levels. Critically ill patients can benefit from deferasirox, an iron chelator administered orally at 20–40 mgkg?1 once daily, as well as intravenous deferoxamine at 1000 mg initially followed by 500 mg every 4 to 12 h. It can be combined with monoclonal antibodies, antioxidants, corticosteroids, and lactoferrin to make iron chelation therapy effective for COVID-19 victims. In this article, we analyze the antiviral and antifibrotic activity of iron chelators, thereby promoting iron depletion therapy as a potentially innovative treatment strategy for COVID-19.  相似文献   

18.
In order to investigate the capability of two chelators deferasirox (DFX or ICL670) and deferiprone (L1) in removing lead from the body, the present research was performed. Two does levels of 40 and 80 mg/kg body weight of lead (II) chloride was given to rats as biological model for 45 days. After 45 days, some toxicity symptoms were observed in rats such as loss of hair and weight, appearance of red dots around eyes, weakness and irritability. After lead application, chelation therapy with DFX and L1 as mono and combined (DFX, L1 and DFX + L1) was done for 10 days. After chelation therapy, lead level in different tissues reduced. The combined chelation therapy results showed that these chelators are able to remove lead from the body and toxicity symptoms decreased. The combined therapy results (DFX + L1) show higher efficacy and lower toxicity compared to single therapies.  相似文献   

19.
Although disturbance of cardiac Ca2+ regulation is involved in the pathophysiology of iron-overload cardiomyopathy, the obvious mechanisms involved in the dysregulation of iron-induced cardiac Ca2+ are unclear. Moreover, the roles of the iron chelator deferiprone and the T-type calcium channel blocker efonidipine on cardiac intracellular Ca2+ transients and Ca2+ regulatory proteins in thalassemic mice are still unknown. We tested the hypothesis that treatment with either deferiprone or efonidipine attenuated cardiac Ca2+ dysregulation and led to improved left ventricular (LV) function in iron-overloaded thalassemic mice. Wild-type (WT) mice and β-thalassemic (HT) mice were fed with either a normal diet (ND) or a high iron-diet (FE) for 90 days. Then, the FE-fed mice were treated with either deferiprone (75 mg/kg/day) or efonidipine (4 mg/kg/day) for 30 days. ND-fed HT mice had an increase in T-type calcium channels (TTCC) and an increased level of sarcoplasmic reticulum Ca2+-ATPase (SERCA), compared with ND-fed WT mice. Chronic iron feeding led to an increase in TTCC and expression of SERCA proteins in FE-fed WT mice. Moreover, chronic iron overload led to increased plasma non-transferrin bound iron (NTBI) and cardiac iron deposition, impaired cardiac intracellular Ca2+ transients including decreased intracellular Ca2+ transient amplitude, rising rate and decay rate, as well as impaired LV function as indicated by a decreased %LV ejection fraction (%LVEF) in both WT and HT mice. Our findings showed that treatment with either deferiprone (DFP) or efonidipine (EFO) showed similar benefits in reducing plasma NTBI and cardiac iron deposition, and improving %LVEF from 84.3 (WT) to 89.3 (DFP) and 89.2 (EFO) treatment; and from 84.2 (HT) to 88.8 (DFP) and 89.5 (EFO) treatment, however there was no improvement in the regulation of cardiac Ca2+ in iron-overloaded thalassemic mice. These findings provide the understanding of the effects of these drugs on the iron-overloaded heart in thalassemic mice and suggest that an alternative intervention that could improve calcium regulation under this condition is needed to improve the therapeutic outcome. Moreover, whether the benefits of the TTCC blocker is via its inhibition of the TTCC alone or together with its ability to chelate iron are still unclear and need further investigation.  相似文献   

20.
Recent developments in the understanding of the molecular control of iron homeostasis provided novel insights into the mechanisms responsible for normal iron balance. However in chronic anemias associated with iron overload, such mechanisms are no longer sufficient to offer protection from iron toxicity, and iron chelating therapy is the only method available for preventing early death caused mainly by myocardial and hepatic damage. Today, long-term deferoxamine (DFO) therapy is an integral part of the management of thalassemia and other transfusion-dependent anemias, with a major impact on well-being and survival. However, the high cost and rigorous requirements of DFO therapy, and the significant toxicity of deferiprone underline the need for the continued development of new and improved orally effective iron chelators. Within recent years more than one thousand candidate compounds have been screened in animal models. The most outstanding of these compounds include deferiprone (L1); pyridoxal isonicotinoyl hydrazone (PIH) and; bishydroxy- phenyl thiazole. Deferiprone has been used extensively as a substitute for DFO in clinical trials involving hundreds of patients. However, L1 treatment alone fails to achieve a negative iron balance in a substantial proportion of subjects. Deferiprone is less effective than DFO and its potential hepatotoxicity is an issue of current controversy. A new orally effective iron chelator should not necessarily be regarded as one displacing the presently accepted and highly effective parenteral drug DFO. Rather, it could be employed to extend the scope of iron chelating strategies in a manner analogous with the combined use of medications in the management of other conditions such as hypertension or diabetes. Coadministration or alternating use of DFO and a suitable oral chelator may allow a decrease in dosage of both drugs and improve compliance by decreasing the demand on tedious parenteral drug administration. Combined use of DFO and L1 has already been shown to result in successful depletion of iron stores in patients previously failing to respond to single drug therapy, and to lead to improved compliance with treatment. It may also result in a “shuttle effect” between weak intracellular chelators and powerful extracellular chelators or exploit the entero-hepatic cycle to promote fecal iron excretion. All of these innovative ways of chelator usage are now awaiting evaluation in experimental models and in the clinical setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号