首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-β1 (TGF-β1) is an important mediator of atrial fibrosis and atrial fibrillation (AF). But the involved genetic mechanism is unknown. Herein, the TGF-β1 C-509T polymorphism (rs1800469) was genotyped in a case-control study of 840 patients and 845 controls in Chinese population to explore the association between the polymorphism and susceptibility and prognosis of lone AF. As a result, the CT and/or TT genotypes had an increased lone AF risk [adjusted odds ratio (OR) = 1.50 for CT, OR = 3.72 for TT, and OR = 2.15 for CT/TT], compared with the TGF-β1CC genotype. Moreover, patients carrying CT/TT genotypes showed a higher possibility of AF recurrence after catheter ablation, compared with patients carrying CC genotype. In a genotype-phenotype correlation analysis using 24 normal left atrial appendage samples, increasing gradients of atrial TGF-β1 expression levels positively correlated with atrial collagen volume fraction were identified in samples with CC, CT and TT genotypes. The in vitro luciferase assays also showed a higher luciferase activity of the -509T allele than that of the -509C allele. In conclusion, the TGF-β1 C-509T polymorphism is involved in the etiology of lone AF and thus may be a marker for genetic susceptibility to lone AF and predicting prognosis after catheter ablation in Chinese populations. Therefore, we provide new information about treatment strategies and our understanding of TGF-β1 in AF.  相似文献   

2.

Background

Neointima forming after stent implantation consists of vascular smooth muscle cells (VSMCs) in 90%. Growth factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A play an important role in VSMC proliferation and migration to the tunica intima after arterial wall injury. The aim of this paper was an analysis of functional polymorphisms in genes encoding TGF-β1, PDGFB, EGF, bFGF and VEGF-A in relation to in-stent restenosis (ISR).

Materials and Methods

265 patients with a stable coronary artery disease (SCAD) hospitalized in our center in the years 2007–2011 were included in the study. All patients underwent stent implantation at admission to the hospital and had another coronary angiography performed due to recurrence of the ailments or a positive result of the test assessing the coronary flow reserve. Angiographically significant ISR was defined as stenosis >50% in the stented coronary artery segment. The patients were divided into two groups–with angiographically significant ISR (n = 53) and without significant ISR (n = 212). Additionally, the assessment of late lumen loss (LLL) in vessel was performed. EGF rs4444903 polymorphism was genotyped using the PCR-RFLP method whilst rs1800470 (TGFB1), rs2285094 (PDGFB) rs308395 (bFGF) and rs699947 (VEGF-A) were determined using the TaqMan method.

Results

Angiographically significant ISR was significantly less frequently observed in the group of patients with the A/A genotype of rs1800470 polymorphism (TGFB1) versus patients with A/G and G/G genotypes. In the multivariable analysis, LLL was significantly lower in patients with the A/A genotype of rs1800470 (TGFB1) versus those with the A/G and G/G genotypes and higher in patients with the A/A genotype of the VEGF-A polymorphism versus the A/C and C/C genotypes. The C/C genotype of rs2285094 (PDGFB) was associated with greater LLL compared to C/T heterozygotes and T/T homozygotes.

Conclusions

The polymorphisms rs1800470, rs2285094 and rs6999447 of the TGFB1, PDGFB and VEGF-A genes, respectively, are associated with LLL in patients with SCAD treated by PCI with a metal stent implantation.  相似文献   

3.
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the general population; yet, the precise mechanisms resulting in AF are not fully understood. Caveolin-1 (Cav-1), the principal structural component of caveolae organelles in cardiac fibroblasts, is involved in several cardiovascular conditions; however, the study on its function in atrium, in particular, in AF, is still lacking. This report examines the hypothesis that Cav-1 confers an anti-AF effect by mediating atrial structural remodeling through its anti-fibrotic action. We evaluated the expression of Cav-1, transforming growth factor-β1 (TGF-β1), and fibrosis in atrial specimens of 13 patients with AF and 10 subjects with sinus rhythm, and found that the expression of Cav-1 was significantly downregulated, whereas TGF-β1 level, collagens I/III contents and atrial fibrosis were markedly increased, in AF. Western blot analysis demonstrated that treatment of human atrial fibroblasts (HAFs) with TGF-β1 resulted in a concentration- and time-dependent repression of Cav-1. Downregulation of Cav-1 with siRNA increased the TGF-β1-induced activation of Smad signal pathway and collagens production in HAFs. Furthermore, incubation of HAFs with the peptides derived from Cav-1 to achieve Cav-1 gain-of-function abolished the TGF-β1-induced production of collagens I/III and decreases of MMP-2/-9 expression. Therefore it was concluded that Cav-1 is an important anti-AF signaling mediator by conferring its anti-fibrotic effects in atrium.  相似文献   

4.

Background

Transforming growth factor-beta 1 (TGF-β1) protein may be multifunctional and related to the development of fibrosis, induction of apoptosis, extracellular signaling and inhibition of proliferation in response to radiation-induced DNA damage. Several studies have investigated associations between single nucleotide polymorphisms (SNPs) in the TGFB1 gene and risk of late radiation-induced injury of normal tissue, but the conclusions remain controversial.

Methods

We searched three electronic databases (i.e., MEDLINE, EMBASE and EBSCO) for eligible publications and performed a meta-analysis assessing the association of three commonly studied SNPs in TGFB1 (i.e., rs1800469, rs1800470 and rs1800471) with risk of late radiation-induced injury of normal tissue.

Results

We finally included 28 case-only studies from 16 publications on aforementioned SNPs in TGFB1. However, we did not find statistical evidence of any significant association with overall risk of late radiotherapy toxicity in the pooled analysis or in further stratified analysis by cancer type, endpoint, ethnicity and sample size.

Conclusions

This meta-analysis did not find statistical evidence for an association between SNPs in TGFB1 and risk of late radiation-induced injury of normal tissue, but this finding needs further confirmation by a single large study.  相似文献   

5.
Atrial fibrillation (AF) is the most common arrhythmia in the clinical setting and an independent risk factor for stroke. Approximately 10 million Chinese people are affected by AF, but the genetic basis is largely unknown. A recent genome-wide association study in Iceland identified association between SNP rs2200733 on 4q25 and AF; however, many independent replication studies are essential to unequivocally validate this association. To assess the association between rs2200733 and AF as well as that between rs2200733 and ischemic stroke in a mainland Chinese Han population, we carried out case–control association studies with 383 AF patients versus 851 non-AF controls and 811 ischemic stroke patients versus 688 non-stroke controls. Highly significant association was detected between rs2200733 and AF in a Chinese Han population (allelic P = 3.7 × 10?11 with OR = 1.81; genotypic P = 4.1 × 10?12 with a dominant model). When the AF cases were divided into lone AF (32.6%) and other types of AF (67.4%), significantly stronger association was found with lone AF (OR = 2.40, P = 1.3 × 10?9 compared to OR = 1.59, P = 6.2 × 10?7 for other types of AF; P = 0.02 for two ORs). No significant association was found between rs2200733 and ischemic stroke. Our results suggest that SNP rs2200733 confers a highly significant risk of AF, but not ischemic stroke, in a more representative Chinese Han population in the mainland China.  相似文献   

6.

Purpose

Transforming growth factor (TGF) -β1 signaling is involved in cancer-cell metastasis. We investigated whether single nucleotide polymorphisms (SNPs) at TGFβ1 were associated with overall survival (OS) and distant metastasis-free survival (DMFS) in patients with non-small cell lung cancer (NSCLC) treated with definitive radiotherapy, with or without chemotherapy.

Methods

We genotyped TGFβ1 SNPs at rs1800469 (C–509T), rs1800471 (G915C), and rs1982073 (T+29C) by polymerase chain reaction-restriction fragment length polymorphism in blood samples from 205 NSCLC patients who had had definitive radiotherapy at one institution in November 1998–January 2005. We also tested whether the TGF-β1 rs1982073 (T+29C) SNP affected the migration and invasion of A549 and PC9 lung cancer cells.

Results

Median follow-up time for all patients was 17 months (range, 1–97 months; 39 months for patients alive at the time of analysis). Multivariate analysis showed that the TGFβ1 rs1800469 CT/CC genotype was associated with poor OS (hazard ratio [HR] = 1.463 [95% confidence interval {CI} = 1.012–2.114], P = 0.043) and shorter DMFS (HR = 1.601 [95% CI = 1.042–2.459], P = 0.032) and that the TGFβ1 rs1982073 CT/CC genotype predicted poor DMFS (HR = 1.589 [95% CI = 1.009–2.502], P = 0.046) and poor brain MFS (HR = 2.567 [95% CI = 1.155–5.702], P = 0.021) after adjustment for age, sex, race, performance status, smoking status, tumor histology and volume, stage, receipt of concurrent radiochemotherapy, number of chemotherapy cycles, and radiation dose. Transfection with TGFβ1+29C (vs. +29T) stimulated the migration and invasion of A549 and PC9 cells, suggesting that TGFβ1+29C may be linked with increased metastatic potential.

Conclusions

TGFβ1 genotypes at rs1800469 and rs1982073 could be useful for predicting DMFS among patients with NSCLC treated with definitive radiation therapy. These findings require validation in larger prospective trials and thorough mechanistic studies.  相似文献   

7.
Transforming growth factor (TGF)-β1 is a cytokine that participates in a broad range of cellular regulatory processes and is associated with various diseases including aortic aneurysm. Increased TGF-β1 levels are linked to Marfan syndrome (MFS) caused by fibrillin1 (FBN1) mutations and subsequent defects in signaling system. FBN1 single nucleotide polymorphisms (SNPs) rs2118181 and rs1059177 do not cause MFS but are associated with dilative pathology of aortic aneurysms (DPAAs). TGF-β1 and FBN1 SNPs rs2118181 and rs1059177 are potential biomarkers for early diagnosis of DPAA. We investigated the relationship between TGF-β1 levels in human blood plasma and FBN1 rs2118181 and rs1059177 in 269 individuals. The results showed a quantitative dependence of SNP genotype and TGF-β1 concentration. Presence of a single rs2118181 minor allele (G) increased the amount of TGF-β1 by roughly 1 ng/mL. Two copies of FBN1 rs1059177 minor allele (G) were required to have an additive effect on TGF-β1 levels. We found higher TGF-β1 concentrations in men compared with women (p = 0.001). A strong correlation between TGF-β1 levels and FBN1 SNPs suggests that a single nucleotide substitution in FBN1 sequence might reduce bioavailability or binding properties of fibrillin-1 and have an effect on TGF-β1 activation and cytokine concentration in blood plasma. By establishing the relationship between TGF-β1 and FBN1 SNPs rs2118181 and rs1059177, we provide evidence that their combination might be used as molecular biomarkers to identify patients at risk for sporadic ascending aortic aneurysm and aortic dissection.  相似文献   

8.

Introduction

TGF-β1 is a multi-functional cytokine that plays an important role in breast carcinogenesis. Critical role of TGF-β1 signaling in breast cancer progression is well documented. Some TGF-β1 polymorphisms influence its expression; however, their impact on breast cancer risk is not clear.

Methods

We analyzed 1222 samples in a candidate gene-based genetic association study on two distantly located and ethnically divergent case-control groups of Indian women, followed by a population-based genetic epidemiology study analyzing these polymorphisms in other Indian populations. The c.29C>T (Pro10Leu, rs1982073 or rs1800470) and c.74G>C (Arg25Pro, rs1800471) polymorphisms in the TGF-β1 gene were analyzed using direct DNA sequencing, and peripheral level of TGF-β1 were measured by ELISA.

Results

c.29C>T substitution increased breast cancer risk, irrespective of ethnicity and menopausal status. On the other hand, c.74G>C substitution reduced breast cancer risk significantly in the north Indian group (p = 0.0005) and only in the pre-menopausal women. The protective effect of c.74G>C polymorphism may be ethnicity-specific, as no association was seen in south Indian group. The polymorphic status of c.29C>T was comparable among Indo-Europeans, Dravidians, and Tibeto-Burmans. Interestingly, we found that Tibeto-Burmans lack polymorphism at c.74G>C locus as true for the Chinese populations. However, the Brahmins of Nepal (Indo-Europeans) showed polymorphism in 2.08% of alleles. Mean TGF-β1 was significantly elevated in patients in comparison to controls (p<0.001).

Conclusion

c.29C>T and c.74G>C polymorphisms in the TGF-β1 gene significantly affect breast cancer risk, which correlates with elevated TGF-β1 level in the patients. The c.29C>T locus is polymorphic across ethnically different populations, but c.74G>C locus is monomorphic in Tibeto-Burmans and polymorphic in other Indian populations.  相似文献   

9.
10.
Chang  Yafei  Yuan  Qinghua  Jiang  Peipei  Sun  Ling  Ma  Yitong  Ma  Xiang 《Mammalian genome》2022,33(3):555-563

To investigate the association of myosin heavy chain protein 11 (MYH11) and transforming growth factor β signaling-related gene polymorphisms with the susceptibility of DeBakey type III aortic dissection (AD) and its clinical outcomes. Four single-nucleotide polymorphism (SNPs) (MYH11 rs115364997, rs117593370, TGFB1 rs1800469, and TGFBR1 rs1626340) were analyzed in patients with DeBakey III AD (173) and healthy participants (335). Gene–gene and gene–environment interactions were evaluated using generalized multifactor dimensionality reduction. The patients were followed up for a median of 55.7 months. MYH11 rs115364997 G or TGFBR1 rs1626340 A carriers had an increased risk of DeBakey type III AD. MYH11, TGFB1, TGFBR1, and environment interactions contributed to the risk of DeBakey type III AD (cross-validation consistency?=?10/10, P?=?0.001). Dominant models of MYH11 rs115364997 AG?+?GG genotype (HR?=?2.443; 95%CI: 1.096–5.445, P?=?0.029), TGFB1 rs1800469 AG?+?GG (HR?=?2.303; 95%CI: 1.069–4.96, P?=?0.033) were associated with an increased risk of mortality in DeBakey type III AD. The dominant model of TGFB1 rs1800469 AG?+?GG genotype was associated with an increased risk of recurrence of chest pain in DeBakey type III AD (HR?=?1.566; 95%CI: 1.018–2.378, P?=?0.041). In conclusions, G carriers of MYH11 rs115364997 or TGFB1 rs1800469 may be the poor prognostic indicators of mortality and recurrent chest pain in DeBakey type III AD. The interactions of gene–gene and gene–environment are associated with the risk of DeBakey type III AD.

  相似文献   

11.
The human α/β hydrolase domain-containing protein 2 gene (ABHD2) plays a critical role in pulmonary emphysema, a major subset of the clinical entity known as chronic obstructive pulmonary disease (COPD). Here, we evaluated genetic variation in the ABHD2 gene in a Chinese Han population of 286 COPD patients and 326 control subjects. The rs12442260 CT/CC genotype was associated with COPD (P < 0.001) under a dominant model. In the former-smoker group, the rs12442260 TT genotype was associated with a decreased risk of developing COPD after adjusting for age, gender and pack-years (P = 0.012). Rs12442260 was also associated with pre-FEV1 (the predicted bronchodilator forced expiratory volume in the first second) in controls (P = 0.027), but with FEV1/ forced vital capacity (FVC) ratios only in COPD patients (P = 0.012) under a dominant model. Results from the current study suggest that ABHD2 gene polymorphisms contribute to COPD susceptibility in the Chinese Han population.  相似文献   

12.
Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05) and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05). The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05) in expression of genes associated with tumorigenesis (MAPK8, CDC6), epithelial-mesenchymal transition (NOTCH1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation.  相似文献   

13.
IntroductionIn vitro and animal model of osteoarthritis (OA) studies suggest that TGF-β signalling is involved in OA, but human data is limited. We undertook this study to elucidate the role of TGF-β signalling pathway in OA by comparing the expression levels of TGFB1 and BMP2 as ligands, SMAD3 as an intracellular mediator, and MMP13 as a targeted gene between human osteoarthritic and healthy cartilage.MethodsHuman cartilage samples were collected from patients undergoing total hip/knee joint replacement surgery due to primary OA or hip fractures as controls. RNA was extracted from the cartilage tissues. Real-time quantitative PCR was performed to measure gene expression. Mann-Whitney test was utilized to compare the expression levels of TGFB1, BMP2, SMAD3 and MMP13 in human cartilage between OA cases and controls. Spearman’s rank correlation coefficient (rho) was calculated to examine the correlation between the expression levels of the four genes studied and non-parametric regression was used to adjust for covariates.ResultsA total of 32 OA cases (25 hip OA and 7 knee OA) and 21 healthy controls were included. The expression of TGFB1, SMAD3, and MMP13 were on average 70 %, 46 %, and 355 % higher, respectively, whereas the expression of BMP2 was 88 % lower, in OA-affected cartilage than that of controls (all p < 0.03), but no difference was observed between hip and knee OA (all p > 0.4). The expression of TGFB1 was correlated with the expression of SMAD3 (rho = 0.50, p = 0.003) and MMP13 (rho = 0.46, p = 0.007) in OA-affected cartilage and the significance became stronger after adjustment for age, sex, and BMI. The expression of BMP2 was negatively correlated with both TGFB1 (rho = −0.50, p = 0.02) and MMP13 (rho = −0.48, p = 0.02) in healthy cartilage, but the significance was altered after adjustment for the covariates. There was no correlation between the expression of SMAD3 and MMP13.ConclusionsOur results demonstrate that MMP13 expression is associated with an increased expression of TGFB1 in OA-affected cartilage, possibly through SMAD-independent TGF-β pathway. Furthermore, TGF-β/SMAD3 is overactivated in OA cartilage; yet, the consequence of this overactivation remains to be established.  相似文献   

14.

Background

Transforming growth factor (TGF)-β signaling pathway, may act both as a tumor suppressor and as a tumor promoter in pancreatic cancer, depending on tumor stage and cellular context. TGF-β pathway has been under intensive investigation as a potential therapeutic target in the treatment of cancer. We hypothesized a correlation between TGF-βR2/SMAD4 expression in the tumor, plasma TGF-β1 ligand level, genetic variation in TGF-B pathway and prognosis of pancreatic cancer.

Method

We examined TGF-βR2 and SMAD4 protein expression in biopsy or surgical samples from 91 patients with pancreatic ductal adenocarcinoma (PDAC) using immunohistochemistry. Plasma level of TGF-β1 was measured in 644 patients with PDAC using ELISA. Twenty-eight single nucleotide polymorphisms (SNP) of the TGF-β1, TGF-β2, TGF-β3, TGF-βR1, TGF-βR2, and SMAD4 genes were determined in 1636 patients with PDAC using the Sequenom method. Correlation between protein expression in the tumor, plasma TGF-β1 level, and genotypes with overall survival (OS) was evaluated with Cox proportional regression models.

Results

The expression level of TGF-βR2 and SMAD4 as an independent marker was not associated with OS. However, patients with both low nuclear staining of TGF-βR2 and high nuclear staining of SMAD4 may have better survival (P = 0.06). The mean and median level of TGF-β1 was 15.44 (SD: 10.99) and 12.61 (interquartile range: 8.31 to 19.04) ng/ml respectively. Patients with advanced disease and in the upper quartile range of TGF-β1 level had significantly reduced survival than those with low levels (P = 0.02). A significant association of SMAD4 SNP rs113545983 with overall survival was observed (P<0.0001).

Conclusion

Our data provides valuable baseline information regarding the TGF-β pathway in pancreatic cancer, which can be utilized in targeted therapy clinical trials. High TGF-β1 plasma level, SMAD4 SNP or TGF-βR2/SMAD4 tumor protein expression may suggest a dependence on this pathway in patients with advanced pancreatic cancer.  相似文献   

15.

Background

Epicardial adipose tissue (EAT) is associated to atrial fibrillation (AF) burden and outcome after AF ablation. We intended to determine whether global or local EAT is associated with systemic and/or left atrial (LA) inflammation and markers of endothelial dysfunction in AF patients.

Methods and Results

Total, atrial, and ventricular EAT volume (EATtotal, EATatrial, EATventricular) were measured by multislice cardiac CT in 49 patients with paroxysmal (PAF, n=25) or persistent AF (PeF, n=24). Periatrial epicardial fat thickness at the esophagus (LA-ESO) and thoracic aorta (LA-ThA) were also measured. Vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), soluble intercellular adhesion molecule 1 (sICAM-1), transforming growth factor-β1 (TGF-β1), and von Willebrand Factor (vWF) levels were measured in peripheral and LA blood samples obtained during catheterization during AF ablation. Patients with PeF had higher EATatrial (P<0.05) and LA-ESO (P=0.04) than patients with PAF. VEGF, IL-8, and TGF-β1 were not associated with EAT. In contrast, after adjusting for LA volume and body mass index, higher LA-ThA was significantly associated with higher sICAM-1 and vWF levels, both in peripheral blood (P<0.05) and in LA (P<0.05). Similar results were found with LA-ESO. Body mass index, EATtotal and EATventricular were not associated with sICAM-1 and vWF.

Conclusions

Periatrial epicardial fat showed a significant positive association with increased levels of sICAM-1 and vWF, which are biomarkers of endothelial dysfunction. No such associations were found when considering body mass index or EATtotal. These results suggest that local EAT rather than regional or total adiposity may modulate endothelial dysfunction in patients with AF.  相似文献   

16.
DDR2 gene, playing an essential role in regulating osteoblast differentiation and chondrocyte maturation, may influence bone mineral density (BMD) and osteoporosis, but the genetic variations actually leading to the association remain to be elucidated. Therefore, the aim of this study was to investigate whether the genetic variants in DDR2 are associated with BMD and fracture risk. This study was performed in three samples from two ethnicities, including 1,300 Chinese Han subjects, 700 Chinese Han subjects (350 with osteoporotic hip fractures and 350 healthy controls) and 2,286 US white subjects. Twenty-eight SNPs in DDR2 were genotyped and tested for associations with hip BMD and fractures. We identified 3 SNPs in DDR2 significantly associated with hip BMD in the Chinese population after multiple testing adjustments, which were rs7521233 (P = 1.06×10−4, β: −0.018 for allele C), rs7553831 (P = 1.30×10−4, β: −0.018 for allele T), and rs6697469 (P = 1.59×10−3, β: −0.015 for allele C), separately. These three SNPs were in high linkage disequilibrium. Haplotype analyses detected two significantly associated haplotypes, including one haplotype in block 2 (P = 9.54×10−4, β: −0.016) where these three SNPs located. SNP rs6697469 was also associated with hip fractures (P = 0.043, OR: 1.42) in the Chinese population. The effect on fracture risk was consistent with its association with lower BMD. However, in the white population, we didn’t observe significant associations with hip BMD. eQTL analyses revealed that SNPs associated with BMD also affected DDR2 mRNA expression levels in Chinese. Our findings, together with the prior biological evidence, suggest that DDR2 could be a new candidate for osteoporosis in Chinese population. Our results also reveal an ethnic difference, which highlights the need for further genetic studies in each ethnic group.  相似文献   

17.
Endoplasmic reticulum (ER) stress is one of the contributing factors to the development of β-cell failure in type 2 diabetes. ER stress response through ATF6 has been shown to play an important role in insulin resistance and pancreatic β-cell function. We investigated whether genetic polymorphisms in ATF6 were associated with the risk of pre-diabetes in a Chinese Han population, and whether they had a synergistic effect with obesity. Our samples included 828 individuals who were diagnosed as pre-diabetic, and 620 controls. The minor allele A at rs2340721 was associated with increased risk for pre-diabetes(p = 0.013), and this association was still significant after adjusting for gender, age, body mass index (BMI), and waist-hip ratio(p′ = 0.011). BMI, treated as a continuous variable, and rs2340721 had an interactive effect on pre-diabetic risk(p for interaction = 0.003, β = 0.106). Carriers of GG at rs7522210 were also at a higher risk compared to non-carriers (OR = 1.390, 95%CI:1.206–1.818, p = 0.013, adjusted OR′ = 1.516, 95%CI:1.101–2.006, p′ = 0.006). GG homozygotes had increased fasting blood glucose (FBG) levels(GG vs CX: 5.6±0.52 vs 5.5±0.57 mmol/L, p = 0.016), lower insulin levels (0,30,120 minutes after glucose load) (p<0.05), and reduced areas under the insulin curve than non-carriers(GG vs CX:67.3(44.2–102.3) vs 73.1(49.4–111.4), p = 0.014). rs10918270 was associated with FBG, and rs4657103 with 2 hour glucose levels after a 75 g glucose load. We also identified a haplotype of TTAG composed of rs4657103, rs2134697, rs2340721, and rs12079579, which was associated with pre-diabetes. The genetic variation in ATF6 is associated with pre-diabetes and has interactive effects with BMI on pre-diabetes in the Chinese Han population.  相似文献   

18.

Background

Tumor necrosis factor (TNF) and TNF receptor superfamily (TNFR)-mediated immune response play an essential role in the pathogenesis of severe sepsis. Studies examining associations of TNF and lymphotoxin-α (LTA) single nucleotide polymorphisms (SNPs) with severe sepsis have produced conflicting results. The objective of this study was to investigate whether genetic variation in TNF, LTA, TNFRSF1A and TNFRSF1B was associated with susceptibility to or death from severe sepsis in Chinese Han population.

Methodology/Principal Findings

Ten SNPs in TNF, LTA, TNFRSF1A and TNFRSF1B were genotyped in samples of patients with severe sepsis (n = 432), sepsis (n = 384) and healthy controls (n = 624). Our results showed that rs1800629, a SNP in the promoter region of TNF, was significantly associated with risk for severe sepsis. The minor allele frequency of rs1800629 was significantly higher in severe sepsis patients than that in both healthy controls (Padj = 0.00046, odds ratio (OR)adj = 1.92) and sepsis patients (Padj = 0.002, ORadj = 1.56). Further, we investigated the correlation between rs1800629 genotypes and TNF-α concentrations in peripheral blood mononuclear cells (PBMCs) of healthy volunteers exposed to lipopolysaccharides (LPS) ex vivo, and the association between rs1800629 and TNF-α serum levels in severe sepsis patients. After exposure to LPS, the TNF-α concentration in culture supernatants of PBMCs was significantly higher in the subjects with AA+AG genotypes than that with GG genotype (P = 0.007). Moreover, in patients with severe sepsis, individuals with AA+AG genotypes had significantly higher TNF-α serum concentrations than those with GG genotype (Padj = 0.02). However, there were no significant associations between SNPs in the four candidate genes and 30 day mortality for patients with severe sepsis.

Conclusions/Significance

Our findings suggested that the functional TNF gene SNP rs1800629 was strongly associated with susceptibility to severe sepsis, but not with lethality in Chinese Han population.  相似文献   

19.
BackgroundRecently, we demonstrated that losartan reduced the aortic root dilatation rate (AoDR) in adults with Marfan syndrome (MFS); however, responsiveness was diverse. The aim was to determine the role of transforming growth factor-β (TGF-β) as therapeutic biomarker for effectiveness of losartan on AoDR.MethodsBaseline plasma TGF-β levels of 22 healthy controls and 99 MFS patients, and TGF-β levels after 1 month of losartan treatment in 42 MFS patients were measured. AoDR was assessed by magnetic resonance imaging at baseline and after 3 years of follow-up.ResultsPatients with MFS had higher TGF-β levels compared with healthy controls (121 pg/ml versus 54 pg/mL, p = 0.006). After 1 month of therapy, losartan normalised the TGF-β level in 15 patients (36%); the other 27 patients (64%) showed a significant increase of TGF-β. After 3 years of losartan therapy, patients with a decrease in TGF-β had significantly higher AoDR compared with patients with increased TGF-β (1.5 mm/3 years versus 0.5 mm/3 years, p = 0.04). Patients showing a decrease in TGF-β after losartan therapy had significantly elevated baseline TGF-β levels compared with patients with increased TGF-β (189 pg/ml versus 94 pg/ml, p = 0.05).ConclusionPatients responding to losartan therapy with a reduction of the plasma TGF-β level had higher baseline TGF-β levels and a higher AoDR. Most likely, TGF-β levels may be considered to be a readout of the disease state of the aorta. We propose that increased angiotensin II is the initiator of aorta dilatation and is responsible for increased TGF-β levels in MFS. The concept of TGF-β as initiator of aortic dilatation in MFS patients should be nuanced.  相似文献   

20.
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF1Lβ3/Lβ3). In the TGF1Lβ3/Lβ3 mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF1−/− mice, the TGF1Lβ3/Lβ3 mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF1Lβ3/Lβ3 mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF1Lβ3/Lβ3 mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号