首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

2.
Shrub encroachment linked to heavy grazing has dramatically changed savanna landscapes, and is a major form of rangeland degradation. Our understanding of how shrub encroachment affects arthropod communities is poor, however. Here, we investigate the effects of shrub encroachment on abundance and diversity of ground-dwelling (wingless) arthropods at varying levels of shrub cover in the southern Kalahari. We also ascertain if invertebrate assemblage composition changes with habitat structure and identify which aspects of habitat structure (e.g., grass cover, herbaceous plant cover, shrub density) correlate most strongly with these changes. Ant, scorpion and dung beetle abundance increased with shrub cover, whereas grasshoppers and solifuges declined. Spider and beetle abundance exhibited hump-shaped relationships with shrub cover. RTU richness within orders either mirrored abundances, or exhibited no trend. Shrub density was the habitat component most correlated with similarities between invertebrate assemblages. Ground-dwelling arthropods showed clear shifts in species assemblage composition at a similarity level of 65% according to shrub density. Changes in indicator species showed that within the Tenebrionidae (darkling beetles), certain species respond positively to shrub thickening, replacing other species within the Family. Small-bodied, wingless Scarabaeidae (dung beetles) tended to increase with increased shrub density and three species emerged as significant indicators of more thickened habitats, although this might be a response to greater dung availability, rather than habitat structure itself. We conclude that because ground-dwelling invertebrates showed such clear responses in species assemblage composition, they present excellent candidates for use as indicator species in further studies into bush encroachment.  相似文献   

3.
Dung beetles (Coleoptera: Scarabaeidae) are undoubtedly the most typical and ecologically relevant insects of grazed alpine habitats because they provide valuable ecological services such as biological pest control and soil fertilization. Despite the great ecological contribution of these insects to pasture ecosystem functioning, little is known about their direct or indirect relationships with pastoral activities. The main aim of the study was to assess whether dung beetle diversity was influenced by different intensities of cattle grazing. Dung beetle communities of two adjacent alpine valleys within the Maritime Alps Natural Park (north-western Italian Alps), representing overgrazed and ungrazed pastures, were studied by pitfall trapping. A hierarchical design (three levels: valleys, transects, and replicates) was established for additive partitioning of γ-diversity and Indicator Species Analysis. Evenness and Shannon diversity were significantly higher at the ungrazed than at the overgrazed site because abundances were much more evenly distributed at the former than at the latter site (where one species was dominant over all the others). Dung beetle abundance and species richness of the overgrazed graminaceous pasture vegetation types were in most cases significantly lower than those of the ungrazed nongraminaceous vegetation type. In the additive partitioning of γ -diversity analysis relative to the whole study area, the randomization procedure indicated that the contribution of β to γ-diversity was significantly different from that expected by chance, suggesting that one or more environmental factors has intervened to change the partition of total diversity in the system considered. The analysis of the preferences and fidelity of species (Indicator Species Analysis) showed that only one species chose overgrazed pastures; all the others positively selected the ungrazed site, or the only ungrazed pasture vegetation type (Rumicetum alpini Beger) occurring at the overgrazed site. Results conformed to evidences that overgrazing represents a serious threat to the conservation of alpine dung beetles. To conserve local dung beetle assemblages, especially in protected areas, cattle overgrazing should be avoided. This does not mean, however, that pastoral activities are incompatible with biodiversity conservation. The contemporaneous presence of wild ungulates and low intensity extensive pastoral activities may be useful to preserve both local dung beetle assemblages and alpine pasture ecosystems.  相似文献   

4.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

5.
为了解宁夏黄土丘陵区不同生境地表甲虫群落多样性变化规律及与环境因子的关系, 并探讨不同生态恢复措施对维持地表甲虫群落多样性的影响, 2013年7-8月, 作者利用陷阱法调查了该区6种生境内的地表甲虫群落多样性。结果表明: 灌草混交林地、乔灌混交林地、生态薪炭林地中地表甲虫物种丰富度和个体数量均较高, 天然封育草地、生态经济林地和水平农田中物种丰富度较低, 生态经济林地和水平农田中甲虫个体数量显著高于天然封育草地。不同生境间, 灌草混交林地、乔灌混交林地与生态薪炭林地之间、生态经济林地与水平农田之间甲虫群落组成相似性较高。多元回归分析表明, 草本层生物量、灌木层盖度及土壤含水量是影响甲虫物种丰富度的决定因素, 林冠层盖度和枯落物厚度是决定地表甲虫个体数量的重要因素。CCA分析表明, 枯落物盖度、枯落物厚度、林冠层盖度及草本层盖度是影响地表甲虫群落组成的重要环境因子。研究表明, 灌草混交林地为地表甲虫群落多样性维持较好的生境类型, 是宁夏黄土丘陵区典型生态恢复的最优模式。  相似文献   

6.
  1. An important service in many ecosystems is the turnover and degradation of dung deposited by cattle. Dung beetles are the primary group of insects responsible for dung turnover, and factors affecting their abundance and distribution thus impact dung degradation. Lands lost to grazing due to dung buildup and pasture contamination total millions of acres per year in US pastures.
  2. We evaluated the structural differences in dung beetle assemblages in natural grasslands versus a managed agroecosystem in subtropical southeastern Florida (USA). We measured the direct effect of dung longevity when dung beetle fauna normally inhabiting dung pats were excluded.
  3. Our results indicate dung beetle abundance, functional diversity, and species richness have a substantial impact on the rate of dung turnover in subtropical pastoral lands with ~70% of dung removed from the soil surface after three months. Functional diversity and evenness did not have a significant positive effect on dung removal in managed, versus natural grasslands demonstrating a strong relationship between dung beetle assemblage composition and delivery of a key ecological process, dung degradation.
  4. We suggest the importance of trees, which provide a thermal refuge for beetles, should be dispersed within matrixes of open pasture areas and within proximity to adjacent closed‐canopy hammocks to facilitate the exchange of dung beetles between habitats and therefore maintain the provisioning of dung degradation services by dung beetle assemblages.
  相似文献   

7.
Dung beetles highly depend on the ephemeral microhabitat dung which is food resource and larval habitat at the same time. Environmental conditions surrounding a dung pad, such as vegetation structure, have an impact on dung beetle assemblages. We investigated the influence of dung conditions and surrounding habitat characteristics on Mediterranean dung beetle assemblages in a permanently grazed landscape in northern Sardinia. We sampled the dung beetle assemblages of donkey and horse dung in three different vegetation types and assessed species richness and abundance of dung beetles. Species richness was determined by dung and surrounding habitat conditions, whereas abundance was solely affected by dung conditions. However, species richness and abundance decreased with increasing dung density. The effect of dung density on species richness varied depending on vegetation type, with dry grassland exhibiting the highest number of dung beetles species at high dung density. Species composition in dung pads was influenced by abiotic factors with dwellers being negatively affected by increasing dung-pad temperature. Our results underline the importance of diverse vegetation, particularly with respect to the complexity of vegetation which interrelates with the microclimate. Furthermore, our findings illustrate the negative effect of high dung densities on dung beetle assemblages, suggesting that the degree of the intensity of use by grazing animals is important when considering measures for the conservation of dung beetles.  相似文献   

8.
Environmental fluctuations, such as changes in climate, agricultural management and anthropogenic land-use patterns can affect the diversity of organisms inhabiting an area. Losses of biodiversity alter ecosystems processes, eroding their capacity to deliver ecosystem services. Dung beetles are critical ecosystem service providers, making them an ideal ecological indicator to explore the effects of land-use change on biodiversity. Dung beetles were sampled across three land-use types, in the summers of 2015 and 2016 in the Eastern Cape province, South Africa. Game ranching is regarded as a relatively low-intensity land use type. It was compared with cattle ranching (medium intensity) and dairy farming (high intensity) to examine their effect on dung beetle assemblage metrics (abundance, species richness and true Shannon diversity index), guild diversity (as nesting guilds) and spatial turnover. The intermediate grazing intensity of cattle ranching supported a higher abundance and diversity of both whole dung beetle assemblage and the nesting guilds, followed by the game ranches and then dairy farms. Differences between the sampling years were dependent on the beetle nesting guild, and largely correlated with rainfall and temperature. Cattle and game ranches shared a higher number of species than either shared with dairy farms. Whittaker's Beta-diversity index showed the highest species turnover between game ranches and dairy farms. A mix of game and cattle ranching, minimising dairy farming or restricting it to already ecological degraded sites, appears the best alternative for maintenance of dung beetle diversity and their ecosystem services. The year-to-year trends of the data were in general consistent, confirming that dung beetles are reliable ecological indicators; but also suggest that climate change that affects rainfall will result in the reduction of the abundance and diversity of this key ecological group.  相似文献   

9.
The disturbance of natural environments affects, among others, the diversity of dung beetle assemblages, which could have serious consequences for the ecological processes regulated by these insects. The objective of this study was to evaluate and compare species diversity and functional groups of dung beetle assemblages both in the native forest and in three livestock systems that differed in their structure and composition of vegetation: a livestock system with native trees, a livestock system with exotic trees (Pinus taeda), and traditional open pastures, in the semideciduous Atlantic forest of Argentina, in an area previously covered by continuous forest and currently with a heterogeneous landscape of native forest and different land uses. Pitfall traps baited with cow dung were used in the natural forests and the livestock systems studied. A total of 2461 beetles belonging to 38 species were captured. Treed livestock systems showed the highest species richness (0D) and diversity (1D and 2D). Twelve functional groups were identified. The native forest showed the highest functional group richness, while open pastures had the lowest. In general, livestock systems showed a low proportional abundance of telecoprid, diurnal and large beetles. Microclimate (average temperature and humidity) and soil conditions (soil composition: sandy or clayey) were closely associated with the species and functional group composition. Results confirm that cattle ranching with tree retention preserves dung beetle diversity, and suggest that cattle systems without canopy cover have higher impact (negative effects) than silvopastoral systems on both species and functional groups.  相似文献   

10.
We studied the diversity of dung beetle communities in Japanese pastures to identify the factors that maintain or enhance the diversity of dung beetles at a landscape scale. We surveyed dung beetles from 17 pastures located in the northeastern part of Tochigi Prefecture, which is in the center of mainland Japan. From 1999 to 2001, surveys were conducted during the 6-month grazing period (May to October) by using dung baited basket traps. We also collected information about the environmental conditions and pasture management practices. Twenty-five dung beetle species belonging to Geotrupinae, Scarabaeinae, and Aphodiinae (including 13 tunneler and 12 dweller species) were recorded. The abundance of dweller species decreased with increasing elevation, possibly because of the effect of rainfall, whereas the species richness of tunneler species was affected by cattle disturbance and soil condition. Beetle species richness significantly increased with the number of years that the pastures had been grazed. Ivermectin administration did not appear to have any adverse effect on dung beetle abundance, species richness, or species diversity. The dung beetle datasets of the current study (including specific tunneler and dweller beetle groups) supported the widely documented positive relationship between local abundance and species distribution ranges. The within pasture, within area, and between area hierarchical additive partitioning of regional total diversity indicated that landscape-scale management should be implemented to conserve the regional diversity of the dung beetle communities inhabiting Japanese pastures.  相似文献   

11.
We questioned the capability of post-mining rehabilitation and successional changes in coastal vegetation to achieve restoration of dune forest, dung beetle assemblages in the Maputaland Centre of Endemism, South Africa. A repeat 2010 study of structural turnover between dung beetle assemblages across a 33 year successional sere of rehabilitating vegetation and old-growth forest (>73 years) produced comparable results to an earlier study across the 23 year chronosequence of 2000. Despite overlap, three structural patterns along the 33 year chronosequence were associated with specific stages of vegetation succession and their characteristic microclimates as in 2000. Although species biased to unshaded habitat dominated the earliest succession, there was rapid re-establishment of dominance by shade-associated forest species. In concert with progression from unshaded, post-mining vegetation to strongly shaded, early successional, Acacia shrub-woodland, there was an initial increase in similarity of the dung beetle fauna (species-poor, low abundance) to that in strongly-shaded forest (also species-poor, low abundance). However, in concert with decreasing shade cover in late successional woodland, the dung beetle fauna became species-rich with high abundance so that the early successional trajectory of increasing similarity to forest fauna either levelled off to a plateau (species in 2000; abundance in 2010) or declined (species in 2010, abundance in 2000). It remains to be seen if gaps forming in the oldest Acacia woodland permit forest tree saplings of the exposed understorey to recreate a forest canopy that would be tracked by dung beetles to re-establish a typically species-poor, deep shade, forest assemblage with low abundance.  相似文献   

12.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

13.
Despite high diversity levels of beetles inhabiting dung and carcasses, very few studies have attempted a comparative assessment of copro-necrophile beetle communities in relation to spatio-temporal variations, particularly in the tropics where the vast majority of beetles occur. We compared beetle assemblages attracted to pads of cattle dung and rat carcasses in four contrasting vegetation types associated with oak forest. In a total of 52 transects including 3,952 dung pad days and 2,600 carcass-trap days we recorded 14,989 beetles representing 406 species and 33 families. Necrophiles (323 species and 33 families) were considerably more diverse than coprophiles (172 species and 16 families). Staphylinidae were taxonomically and numerically dominant, comprising 45% of species and 66% of individuals, respectively. Species estimators (Chao 2) suggested that the observed beetle richness represented 68% of coprophile and 56% of necrophile species richness, with rare species constituting the majority of the species: singletons and doubletons?=?89 species (52%) of coprophiles and 166 species (51%) of necrophiles. Beetle assemblages varied in diversity and composition as regards to vegetation type and season: samples from less disturbed vegetation types (continuous oak forest and ravines) had higher beetle diversity, and a strong seasonality effect was recorded for necrophiles, but not for coprophiles. In addition, an indicator value analysis (IndVal), showed that relatively preserved vegetation types recorded more indicator species as compared to disturbed sites. Our studies clearly demonstrates that the least fragmented oak forest and ravine are the most valuable areas for necrophile and coprophile beetles in Neotropical Mexico, especially for specialist beetles.  相似文献   

14.
1. Dung beetles are key contributors to a suite of ecosystem services. Understanding the factors that dictate their distributions is a necessary step towards preventing negative impacts of biodiversity loss. 2. Alpine dung beetle communities were analysed along altitudinal gradients to assess how different components of the community, defined in terms of nesting strategy [dung‐ovipositing Aphodiidae (DOAs), soil‐ovipositing Aphodiidae (SOAs) and two paracoprid (PAR) groups, Geotrupidae and Scarabaeidae] and parameters relevant to dung removal rates (species richness, total biomass and functional diversity), are distributed, and to identify to which environmental factors they respond. 3. Species richness declined with altitude. There was no significant variation in functional diversity or total biomass in relation to altitude. There were significant variations when considered by nesting group: DOA species richness and biomass decreased, SOA biomass increased, and Geotrupidae biomass showed a non‐linear trend, as altitude increased. 4. Functional diversity and total species richness were positively related to vegetation cover. DOA species richness was highest in forest and scrub; SOA species richness was highest in grassland and PAR species richness was lowest in rocky areas. 5. Dung beetle species show different trends in species richness and biomass depending on nesting strategy. Management to promote the dung beetle community should include maintenance of a mosaic of habitat types. Given the likely importance of species richness and biomass to ecosystem functioning, and the complimentary effect of different dung beetle groups, such a strategy may protect and enhance the ecosystem services that Alpine dung beetles provide.  相似文献   

15.
1. Dung beetles perform relevant ecological functions in pastures, such as dung removal and parasite control. Livestock farming is the main economic activity in the Brazilian Pantanal. However, the impact of cattle grazing on the Pantanal's native dung beetle community, and functions performed by them, is still unknown. 2. This study evaluated the effects of cattle activity on dung beetle community attributes (richness, abundance, biomass, composition, and functional group) as well as their ecological functions (dung removal and soil bioturbation) in the Pantanal. In January/February 2016, dung beetles were sampled and their ecological functions measured in 16 sites of native grasslands in Aquidauana, Mato Grosso do Sul, Brazil, 10 areas regularly grazed by cattle and six control ungrazed areas (> 20 years of abandonment). 3. In all, 1169 individuals from 30 species of dung beetles were collected. Although abundance, species richness, and biomass did not differ between grasslands with and without cattle activity, species composition and functional groups differed among systems. Large roller beetles were absent from non‐cattle grasslands, and the abundance, richness, and biomass of medium roller beetles was higher in those systems. 4. Despite causing changes in species/functional group composition, the results of this study show that a density compensation of functional groups in cattle‐grazed natural grasslands seems to have conserved the ecological functions (dung removal and soil bioturbation), with no significant differences between systems. 5. Therefore, these results provide evidence that cattle breeding in natural grasslands of the Brazilian Pantanal can integrate livestock production with the conservation of the dung beetle community and its ecological functions.  相似文献   

16.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

17.
Biodiversity loss and anthropogenic environmental changes are known to impact ecosystem functions and services. However, there are still some uncertainties such as confounding environmental factors other than community attributes that affect ecosystem functioning. Our goal was to understand what factors influence the performance of Scarabaeinae dung beetle functions, testing the hypothesis that both community attributes and environmental variables influence the performance. Toward this aim, we collected dung beetles along an elevational gradient (800–1400 m a.s.l.) in the Espinhaço mountain range (Brazil) and quantified dung beetle functions, that is, dung removal, soil excavation and secondary seed dispersal. We recorded data on environmental factors related to climate, soil and vegetation and evaluated their effects on dung beetle functions. Dung beetle ecological functions declined with elevation and the decrease was more pronounced than richness, indicating that there are other factors involved in functions performance besides diversity of beetles. Indeed, we found that the ecological functions measured were dependent on both dung beetle community attributes and environmental factors. Climate, soil and vegetation influenced dung beetle function performance as much as richness, abundance and body size. Dung beetle functional diversity did not explain any of the functions measured. Our study demonstrates that ecological functions are directly influenced by both community attributes and environmental variables and confirms the link between biodiversity, environment and ecosystem functioning.  相似文献   

18.
本文研究了卧龙国家自然保护区地表甲虫群落在天然落叶阔叶林森林边缘与森林内部和周围草地间多样性差异,在科级水平上探讨边缘效应对地表甲虫群落的影响。调查共设5个重复样带(间距大于500 m);每个样带以距离梯度(25 m)的方式设置样点,分别由边缘深入到森林内部和草地中央100 m,共设45个样点,通过巴氏罐诱法调查地表甲虫群落组成和季节变化。本研究采集甲虫标本4 736 号,隶属于28个科,步甲科、隐翅虫科和叩甲科分别占总数的49.5%、23.5%和13.0%,共同构成本研究地区地表甲虫的优势类群。甲虫的个体数量从森林内部、边缘到周围草地依次降低,而科多样性和均匀度则依次增高,都达到了显著差异。主坐标分析(PCoA)排序表明,森林内部和周围草地间的地表甲虫群落组成差异较大;而森林边缘的群落组成与两者都有较高程度的相似性,反映了森林边缘的地表甲虫群落已经与森林内部的群落组成发生明显分化,除了森林物种成分外,还包含了若干从周围草地环境扩散来的物种成分。从季节动态看,森林边缘和森林内部在丰富度和个体数量的季节变化曲线方面相似性更高;捕食类和腐食类地表甲虫的季节变化在森林内部和边缘相似性更高,而植食类则在森林边缘和草地的相似性更高。多元回归分析表明,枯落物覆盖率是影响地表甲虫科多样性和均匀度的决定因素,枯落物厚度和林冠层覆盖率是决定甲虫个体数量分布的重要因素。以上结果表明,在科级水平上,地表甲虫群落在天然落叶阔叶林边缘已经与森林内部生境发生分化,而且正在加剧的森林片断化进程将会产生更多的森林边缘,因此,保留大面积的天然落叶阔叶林免受破坏和干扰是保护地表甲虫多样性的必要措施。  相似文献   

19.
刘继亮  赵文智  李锋瑞  巴义彬 《生态学报》2020,40(21):7987-7996
干旱区人工植被恢复驱动的土地利用变化强烈影响了地表和土栖的节肢动物群落结构及多样性。然而,我们对地表节肢动物群落关键类群-蜘蛛和甲虫对固沙植被恢复的响应及与环境变化关系的认识还很有限。以天然固沙灌木林和2种人工固沙灌木林为研究对象,运用方差分析和多变量分析等方法定量研究了干旱区天然和人工固沙植被区地表蜘蛛和甲虫分布特征及影响要素。结果表明,天然灌木林与人工梭梭、柽柳林地表蜘蛛和甲虫群落组成明显不同,人工梭梭、柽柳林地表蜘蛛活动密度和甲虫多样性均显著高于天然灌木林,而地表甲虫密度和蜘蛛多样性变化与之相反。两种人工固沙灌木林之间蜘蛛和甲虫群落组成也存在一定差异,人工柽柳林地表蜘蛛活动密度、多样性和甲虫物种丰富度均显著高于人工梭梭林。进一步分析发现,蜘蛛群落中狼蛛科、平腹蛛科、皿蛛亚科和球蛛科与甲虫群落中拟步甲科、步甲科和象甲科等一些甲虫种属对3种生境的选择模式不同决定了蜘蛛和甲虫群落聚集结构。植被、土壤环境因子与蜘蛛和甲虫pRDA和pCCA结果表明,草本生物量、凋落物量、土壤含砂量、电导率和灌木盖度是影响蜘蛛分布的主要环境因子,它们解释了82.1%的蜘蛛群落变异;灌木盖度、草本生物量、土壤...  相似文献   

20.
Unraveling how climate change impacts the diversity and distribution patterns of organisms is a major concern in ecology, especially with climate-sensitive species, such as dung beetles. Often found in warmer weather conditions, beetles are used as bio-indicators of environmental conditions. By using an altitudinal gradient as a proxy for climate change (i.e., space-for-time substitution), we assessed how changes in climatic variables, such as temperature and precipitation, impact patterns of dung beetle diversity and distribution in the Peruvian Andes. We recorded dung beetle diversity using three different types of baits, feces, carrion, and fruits, distributed in 18 pitfall traps in five different altitudinal sites (from 900 to 2500 m, 400 m apart from each other) in the rainy and dry season. We found that (i) dung beetle richness and abundance were influenced by the climate gradient, (ii) seasonality influenced beetle richness, which was high in the wet season, but did not influence abundance, (iii) dung beetle richness and abundance fit to a hump-shaped distribution pattern along the altitudinal gradient, and (iv) species richness is the beta-diversity component that best describes the composition of dung beetle species along the altitudinal gradient. Our data show that the distribution and diversity of dung beetles are different at larger scales, with different patterns resulting from the response of species to both abiotic and biotic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号