首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An aged male rhesus macaque in our colony had decreased appetite and a loss of interest in behavioral testing. CBC analysis revealed a regenerative, microcytic, hypochromic anemia with thrombocytosis, consistent with iron deficiency. A fecal occult blood test was positive. Ultrasound imaging revealed numerous, vascularized focal liver lesions that suggested metastases. The macaque''s appetite continued to decrease, and he became more lethargic. At this point, the investigator elected to euthanize the macaque. At necropsy, the ileocolic junction was white and abnormally thickened, and the liver was pale tan with approximately 18 discrete white masses randomly scattered throughout the hepatic parenchyma. Histologically, the mass at the ileocolic junction was identified as an intestinal adenocarcinoma, whereas the liver masses were confirmed to be undifferentiated hepatic sarcomas. This case report describes a rhesus macaque that had 2 unrelated primary neoplasms. A review of the literature indicates that this rhesus macaque is the first reported to have an adenocarcinoma of the ileocolic junction and multiple hepatic sarcomas simultaneously.Rhesus macaques (Macaca mulatta) are genetically similar to humans, have a similar aging phenotype at approximately 3 times the rate of those in humans, and develop spontaneous cancers similar to those in humans.36 In humans, gastrointestinal carcinomas are relatively common, but most of these lesions arise in the colon and rectum with only a small percentage in the small intestine and ileum.4,12,15,18 Although the ileocolic junction is considered a common site for intestinal adenocarcinomas in aged rhesus macaques, this tumor has also been found in the duodenum, jejunum, distal ileum, cecum, and colon.6,13,21-23,25,39 Intestinal adenocarcinomas also occur in aged cynomologus macaques (Macaca fasicularis),39 cotton-top marmosets (Saguinus oedipus),6,10 common marmosets (Callithrix jacchus),6,27 and a squirrel monkey (Saimiri sciureus).24 Cotton-top marmosets often develop adenocarcinomas of the colon, including the cecum–colon, and rectum.6,10 Common marmosets have been reported to develop adenocarcinomas of the small intestine.6,27 Adenocarcinoma of the cecum in a squirrel monkey has been reported.24Spontaneous hepatic tumors unrelated to carcinogenic factors, such as aflatoxin B1,33 occur only rarely in nonhuman primates. In the United States, primary malignant hepatic tumors in humans are rare, and fewer than 1% are reported to be hepatic sarcomas.1,16,40 Review of the nonhuman primate literature revealed reports of hepatic cholangiocarcinoma in a 25-y-old male capuchin monkey (Cebus albifrons),7 hepatocellular carcinoma in a 24-y-old male squirrel monkey (Saimiri boliviensis)5 and in a female squirrel monkey (Saimiri sciureus) older than 13 y,28 and hepatocellular carcinoma and cholangiocarcinoma in an African green monkey (Cercopithecus aethiops).34 Spontaneous hepatocellular carcinomas were reported to occur in 2 adolescent male cynomologus macaques younger than 5 y.31 Hepatic hemangiosarcoma was diagnosed in 3-y-old female rhesus macaque,26 and hepatic cholangiocarcinoma was found in a rhesus macaque that also had an intestinal adenocarcinoma.39The aged male rhesus macaque (Macaca mulatta) in the current case study was found to have adenocarcinoma of the ileocolic junction and multiple, random, discrete neoplasms in the liver, which were identified as undifferentiated sarcomas. No metastases from the intestinal adenocarcinoma were detected, but neoplastic cells similar to those of the undifferentiated hepatic cells were identified in an intestinal artery. The frequency of multiple tumor types in aged nonhuman primates is relevant to the use of older animals in research.  相似文献   

2.
Secondary hepatic amyloidosis in nonhuman primates carries a grave prognosis once animals become clinically ill. The purpose of this study was to establish serologic parameters that potentially could be used to identify rhesus macaques undergoing subclinical development of secondary hepatic amyloidosis. A retrospective analysis was completed by using serum biochemical profiles from 26 histologically diagnosed amyloidotic macaques evaluated at 2 stages of disease, clinical and subclinical (3 to 32 mo prior to clinical signs of disease). Standard serum biochemistry values for cases were compared with institutional age- and gender-specific references ranges by construction of 95% confidence intervals for the difference between means. In addition, 19 histologically diagnosed amyloidotic macaques and 19 age-matched controls were assayed for changes in various parameters by using routinely banked, frozen (–80 °C) sera available from clinical and subclinical time points. Clinically amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, gamma glutamyltranspeptidase, and macrophage colony-stimulating factor and significantly decreased quantities of albumin and total cholesterol. Subclinical amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, and serum amyloid A and decreased concentrations of albumin and total cholesterol. The serologic parameters studied indicate a temporal relationship of these factors not previously described, show a clear pattern of disease progression, and could be useful in subclinical disease detection.Abbreviations: mCSF, macrophage colony stimulating factor; SAA, serum amyloid AAmyloid is an eosinophilic substance made of insoluble fibrillar protein.32 When deposited extracellularly, amyloid causes displacement of tissue form and disruption of organ function.32 Persistent accretion of amyloid can result in organ failure and ultimately animal death.22 Clinical signs of disease depend on the tissues affected and the degree of involvement.32 Amyloidosis has been well documented in humans, other mammals, birds, and reptiles.38 In humans, amyloidosis plays a key role in many diseases, including Alzheimer disease, type II diabetes, rheumatoid arthritis, and Down syndrome.15,20,35,38Amyloidosis generally is classified into 3 categories: primary, secondary, and hereditary. Primary amyloidosis consists of the immunoglobulin- and myeloma-associated types. Secondary (reactive) amyloidosis is associated with chronic inflammation.24 Common causes of secondary amyloidosis in humans include rheumatoid arthritis, idiopathic colitis, infectious diseases, such as tuberculosis and leprosy, and malignant tumors, such as mesothelioma and Hodgkins disease.28 Hereditary amyloid syndromes are rare and include Mediterranean fever, Muckle–Wells syndrome, and familial amyloid cardiomyopathy.32,38Secondary amyloidosis is the most common form of amyloidosis in animals.38 Amyloidosis occurs in many species of nonhuman primates including the common marmoset (Callithrix jacchus),23 squirrel monkey (Saimiri sciureus),34 rhesus macaque (Macaca mulatta),9,10 pigtailed macaque (Macaca nemestrina),18,27 crab-eating macaque (Macaca fascicularis),27 barbary ape (Macaca sylvanus),6 baboon (Papio spp.),17 mandrill (Papio sphinx), and chimpanzee (Pan troglodytes).16,39 Although a definitive cause of secondary amyloidosis has not been identified in nonhuman primates, this condition has been associated with chronic inflammation due to rheumatoid arthritis,6 viral infection,18 parasitism,1 respiratory disease,27,30 trauma,30 and bacterial enterocolitis.27,30,31 Shigella spp. have received particular attention as a common etiology linking enterocolitis with amyloidosis.4,7,38Previous research on amyloidosis in nonhuman primates has yielded clinical and serologic profiles in end-stage amyloidotic animals, but little is known about the serologic status in the subclinical stages of disease. Amyloid can accumulate for as long as 3 y before severe organ disruption occurs14 and clinical signs of amyloidosis become evident.16 With appropriate analysis, detection of amyloidosis could occur much earlier than typically now achieved, thus allowing for targeted preventative therapy to potentially halt the progression of this insidious disease.  相似文献   

3.
A retrospective study using maternal and birth statistics from an open, captive rhesus macaque colony was done to determine the effects of parity, exposure to simian retrovirus (SRV), housing, maternal parity, and maternal birth weight on infant birth weight, viability and gestation length. Retrospective colony statistics for a 23-y period indicated that birth weight, but not gestation length, differed between genders. Adjusted mean birth weights were higher in nonviable infants. Mothers positive for SRV had shorter gestations, but SRV exposure did not affect neonatal birth weights or viability. Infants born in cages had longer gestations than did those born in pens, but neither birth weight nor viability differed between these groups. Maternal birth weight did not correlate with infant birth weight but positively correlated with gestation length. Parity was correlated with birth weight and decreased viability. Increased parity of the mother was associated with higher birth weight of the infant. A transgenerational trend toward increasing birth weight was noted. The birth statistics of this colony were consistent with those of other macaque colonies. Unlike findings for humans, maternal birth weight had little predictive value for infant outcomes in rhesus macaques. Nonviable rhesus infants had higher birth weights, unlike their human counterparts, perhaps due to gestational diabetes occurring in a sedentary caged population. Similar to the situation for humans, multiparity had a protective effect on infant viability in rhesus macaques.Abbreviations: ANCOVA, analysis of covariance; PRL, Primate Research Laboratory; SRV, simian retrovirusThe rhesus macaque (Macaca mulatta) is a useful animal model for human female reproduction studies because the comparative physiology between the 2 species is nearly identical.1.5,49 Some factors that affect birth weight and neonatal viability in both humans and macaques include maternal birth weight, maternal age, maternal parity, and the presence of underlying maternal disease. Even experimentally induced simulated human lifestyle factors can affect neonatal outcome.10,16,17,25,44In humans, maternal birth weight correlates with infant birth weight such that low birth weight mothers themselves have low birth weight infants.8,19,28,30 A similar association has been shown in the macaque.38,39 Because low birth weight is associated with increased neonatal mortality in humans and in macaques, this correlation, if present, may have important predictive value.11,20,21,32,45,47,53 One objective of this study was to establish whether maternal birth weight correlated with neonatal birth weight and viability in this colony of rhesus macaques.The relationship between parity, age, and birth outcomes in humans is controversial because multiparous and grand multiparous women tend to be of lower socioeconomic status, older, and have many confounding lifestyle factors.2,24,27,56 In macaques, low parity and young age are associated with reproductive failure.50 In pigtailed macaques (Macaca nemestrina), increased parity was associated with decreased neonatal viability but increased birth weight. Despite their lower parity, younger mothers in the colony of pigtailed macaques produced lower birth-weight infants, but more viable infants, compared with those of older mothers.17 The positive correlation between birth weight and viability merits further investigation in rhesus macaques. One objective of the current study was to determine whether maternal parity and age affected birth weight and neonatal viability in our rhesus macaque colony.The lifestyle factors of alcohol consumption, cigarettes, caffeine, drug use, diabetes and exercise have all been shown to influence birth weight and gestation length in humans and macaques.4,7,15,22,26,35,40,42,44,51,55 Captive animals can become obese and develop insulin-resistant diabetes, which prolongs gestation and produces oversized infants that are less healthy.21,46,51 Because exercise is a preventative lifestyle factor for obesity and diabetes, it would be useful to compare active animals with sedentary ones.30 Previous retrospective colony studies in pigtail macaques show that cage type, location, and social housing have significant effects on birth weight and birth outcome.18,19 Another objective of the current study was to determine whether housing in cages (sedentary animals) or group pens (active animals) influenced gestation length, birth weight, and viability in our rhesus macaques.Another factor in birth outcome is the disease status of the mother. Viral infections, particularly of adenoviruses and immunosuppressive retroviruses, are associated with low birth weight and infant mortality in humans and nonhuman primates.13,21,25,33, 34,52,53 A previous report describes maternal transmission of simian retrovirus in a colony of pigtailed macaques with concurrent immunosuppression, low birth weight, and increased infant mortality in viremic mothers.33 However, some evidence suggests that lentiviral antibodies in amniotic fluid may protect against in utero infection.23 Further confounding the effects of retroviruses on reproductive outcome, animals infected horizontally can be viremic but serologically negative, and animals with sufficient, detectable immune responses may have provirus latent in their tissues.33 Because simian retrovirus (SRV) was endemic in the subject rhesus colony and most data were retrospective thus preventing confirmation of viremia, another objective was to determine whether seropositivity of the dam was associated with neonatal viability, gestation length, and infant birth weight.  相似文献   

4.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

5.
A 3.5-y-old, female rhesus macaque (Macaca mulatta) inoculated with SIVmac239 presented 8 mo later for inappetence and facial bruising. Physical examination revealed a superficial skin abrasion below the left eye, bruising below the left brow, and epistaxis of the left nostril. There were no significant findings on CBC, serum chemistry, urinalysis, or radiographs. Differential diagnoses included infectious etiologies, self-injurious behavior, immune-mediated dermatitis, and neoplasia. Lack of response to antibiotic and analgesic therapy and observations of the macaque made it apparent that the skin lesions were self-inflicted. The excoriations rapidly progressed to extend over the nose, and the left palpebrae became edematous. Euthanasia was elected because the macaque appeared to be experiencing continued discomfort despite analgesic therapy. Histopathologic examination revealed systemic cytomegalovirus (CMV) infection involving the facial nerves, periocular nerves, meninges, and perimesenteric lymph nodes. CMV is a common infection in macaques, with adult seroprevalence close to 100% in most colonies. Infection in immunocompetent animals is usually asymptomatic but can cause significant clinical disease in immunodeficient hosts. CMV is associated with a painful peripheral neuropathy in human AIDS patients, and analgesic treatment is often unsatisfactory. Peripheral neuropathy secondary to CMV should be considered as an underlying cause of self-injurious behavior in SIV-infected macaques. Macaques affected by other diseases and disorders may also be at risk for development of painful peripheral neuropathies.Abbreviations: CMV, cytomegalovirus; HCMV, human CMV; RhCMV, rhesus CMV; SIB, self-injurious behaviorRhesus macaques (Macaca mulatta) are one of the most commonly used NHP species in biomedical research.9,25 They generally adapt well to captivity, but some develop abnormal behaviors such as stereotypies and self-injurious behavior (SIB).32 Examples of SIB include excessive hair-plucking, head banging, and self-biting that causes wounds in some cases.32 Self-inflicted wounding has been reported in 11% to 14% of individually housed rhesus macaques and can be difficult to manage.26,32,39 The most commonly discussed risk factors for the development of SIB are related to housing and management, and little is known about potential physiologic causes, such as neuropathic pain.18,26,32 Compulsive SIB directed toward a specific body part due to neuropathic pain or pruritus occurs in humans.12,28Rhesus cytomegalovirus (RhCMV) is enzootic in rhesus macaques with close to 100% seroprevalence by 1 y of age in both wild and captive populations.22,42 As with human cytomegalovirus (HCMV), RhCMV infection is generally subclinical in immunocompetent animals but can cause serious disease in immunodeficient macaques.8 RhCMV can be highly pathogenic in SIV-infected animals, and HCMV is the most common viral opportunistic infection in humans with AIDS.8,37 HCMV infection has been associated with painful peripheral neuropathies in AIDS patients.17,36,37 We here report a case of SIB associated with RhCMV-induced peripheral neuropathy in an immunocompromised macaque.  相似文献   

6.
We performed a cross-sectional study to estimate the prevalence of 2 gamma-2-herpesviruses, rhesus rhadinovirus (RRV) and retroperitoneal fibromatosis herpesvirus (RFHV), in breeding colonies of rhesus macaques. Of 90 animals selected for sampling, 73 (81%) were positive for RRV, which was detected only in blood in 22 (24%), only in saliva in 15 (16%), and in both blood and saliva in 36 (40%). Detection of RRV DNA in blood and saliva was significantly higher in animals younger than 2 y. In comparison, RFHV was detected in 40 (44%) of the 90 animals: only in blood in 5 (6%), only in saliva in 26 (29%), and in both blood and saliva in 9 (10%). Dual infection was detected in 38 (42%) animals; RFHV was only detected in coinfections. The mean RRV genome copy number in blood was significantly higher than that for RFHV. Age was a significant predictor of RRV copy number in blood and RFHV copy number in saliva. Of the 90 animals, 88 (98%) were positive for rhadinoviral antibodies on an immunofluorescent assay. Both RRV and RFHV are highly endemic in socially housed breeding colonies of rhesus macaques, and their patterns of infection are similar to that for the betaherpesvirus rhesus cytomegalovirus.Abbreviations: CNPRC, California National Primate Research Center; GE, genome equivalents (copy number); KSHV, Kaposi sarcoma-associated herpesvirus; RFHV, retroperitoneal fibromatosis herpesvirus; RRV, rhesus rhadinovirus; OSM, oncostatin M geneThe Rhadinovirus genus of gamma-2-herpesviruses is divided into 2 subgroups, RV1 and RV2, based on genomic sequence comparisons.36,44 Rhadinovirus infections are generally subclinical in immunocompetent natural hosts, and overt disease is thought to arise only when hosts are immunocompromised.28 In addition, the ability to establish both lytic and latent infections, a hallmark of the Herpesviridae family, occurs during rhadinovirus infections.1,43 The RV1 subgroup includes Kaposi sarcoma-associated herpesvirus (KSHV; also referred to as human herpesvirus 8)12,32 the causative agent of Kaposi sarcoma, an angioproliferative lesion composed of a mixed population of endothelial, inflammatory and spindle cells.19,24 Furthermore, KSHV has been linked etiologically to 2 different B-cell lymphomas: primary effusion lymphoma and multicentric Castleman disease.17 Retroperitoneal fibromatosis herpesvirus (RFHV) is also a member of the RV1 subgroup and is thought to be the macaque homolog of KSHV.4,8,14,36,37,40 DNA sequences specific for RFHV have been detected in retroperitoneal fibromatosis in macaques coinfected with the potentially immunosuppressive simian betaretrovirus type 2.7 Histologic similarities between retroperitoneal fibromatosis and KS lesions seen in humans coinfected with KSHV and HIV have been previously described.7,9,21,37 During outbreaks of simian betaretrovirus type 2 disease at 2 national primate research centers in the 1980s, the incidence of retroperitoneal fibromatosis was reported to be 5% to 7% for animals younger than 2 y and 1% across all age groups.7,37,45 Since the end of these outbreaks in the late 1980s, retroperitoneal fibromatosis has occurred only rarely in primate colonies. The majority of published RFHV studies have focused on animals with recognized retroperitoneal fibromatosis lesions.9-11 However, RFHV has proven extremely difficult to isolate and, to date, has not been propagated successfully in vitro, and only a small portion of the RFHV genome has been sequenced.36,37,40,44 In this study we determined the prevalence of RFHV infection in nondiseased animals and address aspects of the natural history of this virus infection in captive macaque populations.Rhesus rhadinovirus (RRV) is a member of the RV2 subgroup, which naturally infects rhesus macaques.15,38,44 RRV was isolated independently at 2 national primate research centers in the late 1990s from rhesus macaques.15,42 Both RRV isolates were shown to have noteworthy sequence similarity to KSHV and RFHV.2,8,15,42 Unlike RFHV, RRV can be propagated readily in vitro, thus facilitating studies of the lytic replication cycle.5,6,16 Experimental coinfection of rhesus macaques with SIV and RRV resulted in a lymphoproliferative disease resembling multicentric Castleman disease, but variations in disease outcome between the 2 RRV isolates were noted.30,49 More recently, RRV has been shown to be associated with nonHodgkin lymphoma and retroperitoneal fibromatosis in SIV-infected rhesus macaques.34 Therefore, RRV infection in macaques is a highly useful animal model for the study of KSHV infection in humans, including studies of viral pathogenesis, factors affecting prevalence of infection, viral shedding, and transmission.2,25,31,42 In addition, RRV is a persistent virus targeted for elimination in some specific pathogen free (SPF) macaque breeding populations. A better understanding of the natural history of RRV and RFHV infections will lead to improved characterization of host–virus interactions, contribute to the refinement of these nonhuman primate models, and allow more efficient management of SPF colonies.Here we report estimates of the prevalence of viremia and oral shedding of RRV and RFHV in large age-structured breeding colonies of rhesus macaques. Both viruses were highly endemic in the breeding populations we tested, and coinfection with both viruses was common.  相似文献   

7.
Here we describe the successful surgical implementation of antibiotic-impregnated polymethylmethacrylate beads in a rhesus macaque (Macaca mulatta) with marked osteomyelitis. The macaque presented to the veterinary clinic with grossly contaminated bite wounds in the left ankle secondary to conspecific trauma. Radiographic findings were highly suggestive of osteomyelitis. Additional differential diagnoses included bony infarct, fracture, and cellulitis. In light of the location of the lesion and extensive tissue trauma, the animal had a poor prognosis. Systemic, broad-spectrum antibiotics were instituted. After 2 wk of care, lesions did not respond to empirical therapies. On consultation, a veterinary orthopedic surgeon at another facility recommended placement of antibiotic-impregnated polymethylmethacrylate beads at the sites of osteomyelitis. The animal underwent minor surgery in which beads were introduced into the wound. The monkey had a positive response to therapy. The animal regained full function and was returned to outdoor social housing. Veterinarians are encouraged to consider using antibiotic-impregnated polymethylmethacrylate beads when treating osteomyelitis in other nonhuman primates and in other traditional laboratory animal species.Rhesus macaques can be aggressive, and mild to marked trauma can result from agonistic social encounters.6 The AAALAC-accredited California National Primate Research Center houses more than 4000 rhesus macaques (Macaca mulatta) in large outdoor social corrals. The incidence of animals presenting to the center''s veterinary hospital with traumas requiring sutures or amputation of digits ranges from 5% to 9% annually. Bite wounds predominate and frequently involve extremities (tail tips and digits). Open wounds place animals at risk for development of acute or chronic infections, including osteomyelitis.8,9,11,21 Bacterial contaminants reflect the presence of oral flora secondary to characteristic wounding (for example, Bacteroides spp., coagulase-positive Staphlococcus spp., and Eicinella spp.).Clinical management of osteomyelitis is challenging. The standard of care is based on irrigation of the wound, debridement of necrotic tissues, and administration of systemic antibiotics. Efficacy of systemic antibiotic therapy can be compromised due to poor tissue perfusion and compromised vasculature. Regimens for local administration of antibiotics are being developed continually to improve orthopedic wound management.5,8,9,11,19,21,24,26 Antibiotic-impregnated polymethylmethacrylate (bone cement) is used in human and veterinary orthopedic surgery to provide high, localized concentrations of antibiotics in high-risk, poorly vascularized wounds.Few cases of osteomyelitis have been reported in nonhuman primates, and even fewer reports reflect successful management of such conditions.4,23,25,27,28 Here we document the successful clinical use of antibiotic-impregnated polymethylmethacrylate beads to treat osteomyelitis in a laboratory-housed rhesus macaque.  相似文献   

8.
A 21-y-old female rhesus macaque presented with signs of internal and external ophthamoplegia, including anisocoria and ptosis. Ophthalmoplegia is the paralysis or weakness of one or more intraocular or extraocular muscles that control the movement of eye; this condition can be caused by neurologic or muscle disorders. The macaque was euthanized due to progression of clinical symptoms, and postmortem gross examination revealed a mass at the base of the brain attached to the meninges. Histopathologic examination led to the diagnosis of intracranial meningioma. Here we describe a case of intracranial meningioma with internal and external ophthalmoplegia in a rhesus macaque (Macaca mulatta).Meningioma is a tumor that develops in the meninges, including the dura mater, arachnoid mater, and pia mater, all of which surround the brain and spinal cord. In humans, meningioma is the most frequently encountered primary intracranial neoplasia and accounts for approximately 35% of all reported primary brain tumors in the United States.5,7 Clinical manifestations are dependent on the size and location of the tumor.3,23 To our knowledge, only 3 cases of naturally occurring meningioma in nonhuman primates have been reported; these cases affected 2 baboons and 1 collared brown lemur.17,19,21 The meningiomas of 2 of these previous cases were described only briefly as part of a disease survey of neoplasia in 100 free-ranging baboons and a captive prosimian population.17,21 The third report focused on the pathologic features of the meningioma described with no mention of the clinical signs in the baboon, although its location was similar to that of the case we describe here.19In the current case report, we describe the clinical manifestations, postmortem examination, and diagnosis of an intracranial meningioma in a rhesus macaque (Macaca mulatta).  相似文献   

9.
Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma cruzi. It is endemic in Latin America but also is found in the southern United States, particularly Texas and along the Gulf Coast. Typical clinical manifestations of Chagas disease are not well-characterized in rhesus macaques, but conduction abnormalities, myocarditis, and encephalitis and megaesophagus have been described. Here we report 2 cases of Chagas disease in rhesus macaques housed in the northwestern United States. The first case involved a geriatric male macaque with cardiomegaly, diagnosed as dilated cardiomyopathy on ultrasonographic examination. Postmortem findings included myocarditis as well as ganglioneuritis in the esophagus, stomach, and colon. The second case affected a geriatric female macaque experimentally infected with SIV. She was euthanized for a protocol-related time point. Microscopic examination revealed chronic myocarditis with amastigotes present in the cardiomyocytes, ganglioneuritis, and opportunistic infections attributed to her immunocompromised status. Banked serum samples from both macaques had positive titers for T. cruzi. T. cruzi DNA was amplified by conventional PCR from multiple tissues from both animals. Review of their histories revealed that both animals had been obtained from facilities in South Texas more than 12 y earlier. Given the long period of clinical latency, Chagas disease may be more prevalent in rhesus macaques than typically has been reported. T. cruzi infection should be considered for animals with unexplained cardiac or gastrointestinal pathology and that originated from areas known to have a high risk for disease transmission.Abbreviations: DCM, dilated cardiomyopathy; CMV, cytomegalovirus; NHP, nonhuman primateChagas disease is caused by the hemoflagellate protozoan parasite Trypanosoma cruzi. The disease is endemic in many regions of South and Central America, and its range extends to the southern United States. In the United States, there is evidence that the parasite has established a domestic transmission cycle with canine reservoirs,19 and there are numerous wildlife reservoirs, most importantly armadillos, raccoons, rodents, and opossums.6 The main mode of transmission is via arthropod vectors, primarily triatomine species (kissing bugs or cone-nosed bugs), which serve as intermediate hosts. Vector species are present in the southern half of the United States.2 Infection has been reported sporadically in domestic nonhuman primate (NHP) colonies.12 Autochthonous insect vector-mediated transmission in humans in the United States has been reported rarely.33 Transmission of T. cruzi to NHP is thought to occur mainly through insect vectors, specifically by contamination of the oral mucous membranes with parasite-containing feces during consumption of the bug. The infection may remain subclinical for years and, similar to that in people, affects the nervous system, digestive system, and heart. Clinical findings in NHP are infrequent but can include subcutaneous edema, fever, anorexia, lethargy, heart failure, and sudden death.4,5 As in humans, the disease in NHP consists of an acute phase, with a paucity of clinical manifestations, and a chronic phase, characterized by irreversible cardiomyopathy leading to cardiac dysfunction and death. Chronically infected NHP in the indeterminate form of the chronic phase can exhibit subclinical conduction and echocardiographic abnormalities.8T. cruzi infections have been reported in a number of NHP species housed in Texas, Louisiana, and Georgia. Species affected include rhesus macaques (Macaca mulatta),12,17 cynomolgus macaques (M. fascicularis),29,42 yellow baboons (Papio cynocephalus), olive baboons (P. anubis),12,14,41 pig-tailed macaques (M. nemestrina),12,35 squirrel monkeys (Saimiri sciureus),13 ring-tailed lemurs (Lemur catta),15,30 black-eyed lemurs (Eulemur macaco flavifrons), black and white ruffed lemurs (Varecia variegata variegate),15 pileated gibbon (Hylobates pileatus),36 a lion-tailed macaque (M. silenus),30 a Celebes crested black macaque (M. nigra),27 and a chimpanzee (Pan troglodytes).4 Here we report on 2 cases of Chagas disease in rhesus macaques housed in the northwestern United States but that originated from South Texas.  相似文献   

10.
Neoplasia in juvenile (younger than 5 y) rhesus macaques has been estimated to represent only approximately 1.4% of all occurrences of spontaneous neoplasia. Here we report an unusual case of a 3.75-y-old primiparous female rhesus macaque that was euthanized due to poor prognosis associated with progressive anemia, marked hepatomegaly, and radiographic evidence of metastatic neoplasia. Postmortem examination revealed an invasive, hemorrhagic hepatic mass that effaced approximately 70% of the liver parenchyma and had evidence of metastatic spread to multiple abdominal organs, the lungs, and the pituitary gland. Neoplastic polygonal cells lined large necrohemorrhagic cavities and exhibited marked anisocytosis and anisokaryosis, with frequent multinucleate cells. There was no desmoplasia associated with the primary neoplasm or metastases. Immunohistochemical studies revealed the neoplastic cells to be diffusely reactive with pancytokeratin, cytokeratin 7, and cytokeratin 8/18 antibodies and rarely reactive with carcinoembryonic antigen antibodies. The cells did not react with vimentin, S100, CD31, or factor VIII antibodies. Tumor morphology and immunophenotype led to the diagnosis of anaplastic hepatocellular carcinoma. This report represents the first known case of metastatic liver neoplasia in a rhesus macaque. The young age of this animal and the aggressive nature of the neoplasm are highly unusual and reminiscent of adolescent onset hepatocellular carcinoma in humans.Abbreviations: CK, cytokeratin; HCC, Hepatocellular carcinomaNeoplasia in juvenile rhesus macaques (Macaca mulatta) is extremely uncommon.17,18 In a recent review of spontaneous neoplasia in 2 colonies of rhesus macaques, animals younger than 5 y represented only 1.4% of the total number of cases, and primary hepatic tumors were uncommon.18 All 5 of the cases detected among 2660 macaques involved animals between 14 and 26.8 y of age, and none had evidence of metastasis. Primary hepatic tumors appear to be similarly infrequent occurrences in other nonhuman primates, with the notable exception of prosimians, in which tumors arising from the liver are common spontaneous neoplasms.3,15,17,18 Malignant liver tumors account for only 1% of pediatric tumors in humans.5,7,12 Approximately 80% of these are hepatoblastomas—neoplasms arising from liver progenitor cells—and hepatocellular carcinoma (HCC) represents the second most frequent diagnosis.5,7,12The medicine department of the California National Primate Research Center evaluated a 3.75-y-old, sexually mature, female rhesus macaque for rapidly progressive disease associated with a hepatic mass. Anaplastic HCC with extensive metastasis was diagnosed after postmortem examination. The current report describes the clinical progression of disease, the gross and microscopic pathology of the affected macaque, and the immunohistochemical characterization of the neoplasm.  相似文献   

11.
Rhesus and cynomolgus macaques are frequently used in biomedical research, and the availability of their reference genomes now provides for their use in genome-wide association studies. However, little is known about linkage disequilibrium (LD) in their genomes, which can affect the design and success of such studies. Here we studied LD by using 1781 conserved single-nucleotide polymorphisms (SNPs) in 183 rhesus macaques (Macaca mulatta), including 97 purebred Chinese and 86 purebred Indian animals, and 96 cynomolgus macaques (M. fascicularis fascicularis). Correlation between loci pairs decayed to 0.02 at 1146.83, 2197.92, and 3955.83 kb for Chinese rhesus, Indian rhesus, and cynomolgus macaques, respectively. Differences between the observed heterozygosity and minor allele frequency (MAF) of pairs of these 3 taxa were highly statistically significant. These 3 nonhuman primate taxa have significantly different genetic diversities (heterozygosity and MAF) and rates of LD decay. Our study confirms a much lower rate of LD decay in Indian than in Chinese rhesus macaques relative to that previously reported. In contrast, the especially low rate of LD decay in cynomolgus macaques suggests the particular usefulness of this species in genome-wide association studies. Although conserved markers, such as those used here, are required for valid LD comparisons among taxa, LD can be assessed with less bias by using species-specific markers, because conserved SNPs may be ancestral and therefore not informative for LD.Abbreviations: GWAS, genome-wide association study; LD, linkage disequilibrium; MAF, minor allele frequencyContributing to the widespread use of nonhuman primates in biomedical research, captive-breeding programs such as those of the National Primate Research Center system in the United States were established initially by using animals imported from Asia. The 2 most commonly used primates are rhesus macaques (Macaca mulatta) and long-tailed or cynomolgus macaques (M. fascicularis fascicularis).After humans, rhesus macaques are the most widely distributed primate species.37,38 This species is found throughout mainland Asia, ranging from Afghanistan to India and eastward through Thailand and southern China to the Yellow Sea.31,34 In addition to their significant morphological differences,9 rhesus macaques of Indian and Chinese origins have been demonstrated to exhibit significant phenotypic differences that are directly relevant to their use as biomedical models in experimental studies.2,23,42 Cynomolgus macaques are found south of the subtropical and temperate geographic distributions of rhesus macaques, in the south and southeast Indo-Malayan regions.8,10The 2 species share a common ancestor that lived 1 to 2 million years ago.3,13,25 This ancestral population of rhesus macaques diverged from a fascicularis-like ancestor shared in common with both rhesus and cynomolgus macaques after cynomolgus macaques expanded from their homeland in Indonesia.36 For this reason, genetic markers present in Indian rhesus macaques are either highly derived or are conserved as ancestral markers shared with Chinese rhesus macaques. The interspecific boundaries of rhesus and cynomolgus macaques are delineated by a narrow zone of parapatry in northern Indochina,7,8,10 within which male-biased gene flow37,39 and relatively high, but highly variable, levels of introgression of genes32 have occurred from rhesus to cynomolgus macaque groups.37,39 Because cynomolgus macaques originated in Indonesia36 and because rhesus macaques probably diverged from cynomolgus macaques in southwestern China,11 genetic markers shared between Indonesian cynomolgus macaques and Chinese rhesus macaques comprise a unique set of markers that are conserved in both macaque species.The wide assortment of morphometric differences8,9 and the broad geographic distribution of these 2 macaque species foster an expectation of high genetic diversity within and between them that could be exploited for mapping genes responsible for phenotypic differences between taxa. A better understanding of linkage disequilibrium (LD) in these nonhuman primate species can lead to a more informed selection of study subjects for, and more efficient conduct of, genome-wide association studies (GWAS) of particular diseases that macaques share in common with humans. LD is the nonrandom association of alleles at 2 or more adjacent loci that descend from single, ancestral chromosomes.29 LD plays a critical role in gene mapping, both as a tool for fine mapping of complex disease genes and in GWAS-based approaches. GWAS facilitate the identification of genes associated with complex and common traits or diseases by examining LD estimates among large numbers of common genetic variants, typically single-nucleotide polymorphisms (SNPs), between pairs of different groups of subjects to determine whether any variant is associated with a trait or disease of interest. LD data make tightly linked variants strongly correlated to produce successful association studies. For instance, LD reduces the number of markers and sample size of study subjects required to map genes influencing phenotypes to the genome because markers in LD are linked and inherited together.13 In addition, differences in LD can be used to identify orthologs for detecting the signatures of selective sweeps,21 as defined by dN/dS ratios obtained through the McDonald–Kreitman neutrality test.24 Furthermore, LD assessments can provide a more complete understanding of genome structure by defining the boundaries of haplotype blocks, within which recombination is rare or absent and which are separated by recombination ‘hotspots,’ in genomes.43Evidence from a study based on 1476 SNPs identified in ENCODE regions of the Indian rhesus macaque genome13 indicated that the rate of LD decay is higher in Chinese than in Indian rhesus macaques due to an hypothesized genetic bottleneck experienced by Indian rhesus macaques after diverging from the eastern subspecies, and, therefore, that Indian rhesus macaques, having higher LD, may be more useful for GWAS than Chinese rhesus macaques. In that study,13 only 33% of the SNPs were shared in common between the 2 subspecies, with Chinese rhesus macaques contributing to more than 60% of the remaining rhesus SNPs. Conversely, another study41 reported a slower rate of decay of LD in 25 Chinese than in 25 Indian rhesus macaques on the basis of 4040 SNPs, only 2% of which fell in coding regions, but 68% of those SNPs were shared between the 2 subspecies, with Indian rhesus macaques contributing almost 60% of the remaining SNPs. The marked disparity between the 2 studies in the proportions of shared SNPs used, the subspecies with the most genetic diversity, the sample size of Chinese rhesus macaques, the proportions of SNPs located in or near coding regions that are subject to functional constraints, and the greater disparity in LD decay between the 2 subspecies of rhesus macaques might reflect biases in either or both studies. For example, the use of markers whose frequencies are uncharacteristically low in one subspecies relative to the other can underestimate the rate of LD decay because lower frequency alleles, on average, are younger and have experienced less time for recombination.26 To avoid the influence of such ascertainment biases, comparisons of LD between 2 taxa should involve only SNPs conserved in both taxa. Moreover, because 2 points do not provide a phylogenetic or cladistic analysis to assign specific SNPs to origin on one phylogenetic line or another, comparing just the Indian and Chinese rhesus macaques without an additional primate taxon makes it is difficult to establish polarity and distinguish between derived and conserved SNPs. This limitation likely led to the contradictory conclusions of the 2 previously cited studies13,41 regarding the rate of LD decay in Chinese and Indian rhesus macaques.Because rhesus and cynomolgus macaques share a common fascicularis-like ancestor, a comparison of heterospecific SNPs among cynomolgus, Indian rhesus, and Chinese rhesus macaques would likely be fundamental to inferences regarding genome-wide LD estimates. The objective of the present study was to evaluate the conclusions of previous studies13,41 by using our panel of 1781 autosomal SNPs that are conserved in both rhesus and cynomolgus macaques to estimate the rates at which genome-wide LD decays in Indian and Chinese rhesus macaques and cynomolgus macaques, the species ancestral to rhesus macaques, and to evaluate the suitability of these populations for GWAS.  相似文献   

12.
13.
Amyloidosis is a progressive and ultimately fatal disease in which amyloid, an insoluble fibrillar protein, is deposited inappropriately in multiple organs, eventually leading to organ dysfunction. Although this condition commonly affects macaques, there is currently no reliable method of early diagnosis. Changes in clinical pathology parameters have been associated with amyloidosis but occur in late stages of disease, are nonspecific, and resemble those seen in chronic, idiopathic enterocolitis. A review of animal records revealed that amyloidosis was almost always diagnosed postmortem, with prevalences of 15% and 25% in our rhesus and pig-tailed macaque colonies, respectively. As a noninvasive, high-throughput diagnostic approach to improve antemortem diagnosis of amyloidosis in macaques, we evaluated serum amyloid A (SAA), an acute-phase protein and the precursor to amyloid. Using necropsy records and ELISA analysis of banked serum, we found that SAA is significantly elevated in both rhesus and pig-tailed macaques with amyloid compared with those with chronic enterocolitis and healthy controls. At necropsy, 92% of rhesus and 83% of pig-tailed had amyloid deposition in either the intestines or liver. Minimally invasive biopsy techniques including endoscopy of the small intestine, mucosal biopsy of the colon, and ultrasound-guided trucut biopsy of the liver were used to differentiate macaques in our colonies with similar clinical presentations as either having amyloidosis or chronic, idiopathic enterocolitis. Our data suggest that SAA can serve as an effective noninvasive screening tool for amyloidosis and that minimally invasive biopsies can be used to confirm this diagnosis.Abbreviations: SAA, serum amyloid AAmyloidosis is a pathologic condition that occurs spontaneously in humans, mammals, birds, and reptiles.47 Secondary systemic amyloidosis, also referred to as reactive amyloidosis, is the most common form described in domestic animals.46 It is a progressive disease in which an insoluble fibrillar protein consisting of β pleated sheets, amyloid, is deposited inappropriately in multiple organs, eventually leading to dysfunction.40,46 Secondary amyloidosis is most often the result of chronic infections or inflammatory disease. In humans, it occurs with a wide variety of conditions including inflammatory bowel disease,3 osteoarthritis including rheumatoid and juvenile forms,20,25 chronic infections such as tuberculosis, and hereditary disease such as familial Mediterranean fever.43 Similarly, in nonhuman primates, the disease has been described with several conditions of chronic infection or inflammation including bacterial enterocolitis,4,19,30,37 chronic indwelling catheters,9 parasitism,2,4 respiratory disease,30,37 trauma,37 and rheumatoid arthritis.6Despite reported prevalences as high as 30% in rhesus (Macaca mulatta)4 and 47% in pig-tailed macaques (Macaca nemestrina),19 amyloidosis remains a challenge to diagnose. The current diagnostic ‘gold standard’ in macaques is histopathology of the affected organ;19 however, amyloid can be deposited in tissues for as long as 3 y before the development of clinical signs.16 Histologic diagnoses of amyloidosis typically are confirmed with Congo red staining, in which amyloid proteins appear apple-green and birefringent under polarized light. In addition, electron microscopy can detect the fibrillar amyloid proteins in tissues, and other histologic stains including methyl violet, sulphonated Alcian blue, and thioflavin S and T can be used but are less specific than is Congo red.33 Although changes in clinical pathology parameters such as decreases in serum albumin and total protein have been associated with amyloidosis,19,29 they are often nonspecific and resemble those seen in the frequently comorbid conditions chronic anorexia and chronic, idiopathic enterocolitis. Furthermore, imaging techniques such as abdominal X-ray and ultrasonography have been shown to be nondiagnostic in macaques with amyloidosis.19 Consequently, at our institution and in other macaque colonies, diagnosis of amyloidosis is often made at necropsy.The current standard of diagnosis in humans is biopsy with histopathology of affected organs, but unlike in nonhuman primates, minimally invasive tissue sampling has been extensively explored.17 Aspiration or biopsy of the subcutaneous abdominal fat pad has currently replaced many biopsy techniques as the preliminary diagnostic, with reported sensitivities ranging from 66% to 92%.5,24,28,39,44 Rectal biopsy was previously the preferred minimally invasive approach and is now often used adjunctively when subcutaneous abdominal fat is negative for amyloid but the clinical suspicion for amyloidosis remains high.5,17 Additional tissue biopsy sites with limited morbidity such as skin, gingiva, and stomach have been reported with lesser sensitivities.5,34,39,44 In contrast, limited information is published on the usefulness of minimally invasive biopsy techniques for diagnosing amyloidosis in macaques. One report found endoscopic biopsy of the stomach and colon to be of limited utility in diagnosing amyloidosis in a colony of pig-tailed macaques.19 Similarly, a single publication reported colonoscopy to be noninformative and labor-intensive in a colony of rhesus macaques.15 Retrospective studies of macaque colonies have shown a predilection for amyloid deposition in the intestines and liver,4,30,38 suggesting that endoscopic or percutaneous biopsy of these tissues may reliably provide definitive antemortem diagnosis for amyloidosis.In addition to biopsy, identification of the relevant amyloid precursor protein within the blood is an integral part of the diagnosis of amyloidosis in human patients17 and holds promise as a screening tool in macaque colonies because of its high throughput potential in comparison to biopsy. Serum amyloid A (SAA), an acute-phase protein, can be found circulating in the blood and is the precursor for amyloid formation and deposition in secondary systemic amyloidosis. Specifically, when elevated SAA persists in the bloodstream, it ultimately progresses to amyloid deposition in tissues.13,45 Profound elevations in SAA occur in the bloodstream as a result of acute inflammation, but these elevations are transient as SAA then is rapidly degraded and removed from the peripheral circulation.7,45 Although the exact role of chronic inflammation and SAA in the pathogenesis of secondary, systemic amyloidosis is not well understood, SAA is pathologically persistently elevated in human patients with chronic inflammatory disease that develop secondary systemic amyloidosis. In contrast, serum SAA remains at normal lower levels in human patients without amyloidosis but ongoing chronic inflammatory disease.13,14,26 Furthermore, quantification of SAA is more effective than are organ function tests as a prognostic measure of amyloid disease and is routinely used to monitor disease progression and response to treatment in humans.14 In rhesus and pig-tailed macaques, SAA is elevated in subjects with amyloidosis as compared with those that are clinically normal.8,19 The ability to distinguish between healthy animals and those with subclinical amyloidosis would be clinically useful. Human studies indicate that establishing a diagnosis of secondary amyloidosis in its early stages followed by prompt treatment of the inciting chronic inflammatory process can arrest the progression of amyloidosis and can even result in disease remission in some cases.21,23,31,32,36 Of equal interest would be the ability to distinguish amyloidosis from chronic, idiopathic enterocolitis, a common disease among macaque colonies12,35 that has considerable clinical overlap with the late stages of amyloidosis but different therapeutic options and prognosis than does systemic amyloidosis. Although there is no definitive treatment for amyloidosis in humans or macaques, recent human case reports suggest that antiinflammatory therapy with newer targeted monocolonal antibody medications, such as IL6 receptor antagonists, can successfully reverse the disease. This outcome has been demonstrated in several cases by both the reduction of circulating SAA to normal levels and by the histologic disappearance of amyloid proteins in biopsies of affected tissues.21,23,31,32,36 Accurate antemortem diagnosis of amyloidosis in macaques potentially would support further investigations into the novel application of these drugs for the treatment of amyloidosis in both human and macaque patients.We hypothesize that SAA, in addition to being a useful screening method for identifying animals with amyloidosis, can be used to distinguish between macaques with this disease and those with chronic, idiopathic enterocolitis. We further hypothesize that, in agreement with retrospective studies from macaques at other institutions, the intestines and liver will be commonly affected in amyloidotic macaques in our own colonies and that minimally invasive biopsy of these tissues can provide definitive, antemortem diagnosis of amyloidosis.  相似文献   

14.
An adult, gravid, female pigtailed macaque (Macaca nemestrina) presented for facial swelling centered on the left mandible that was approximately 5 cm wide. Differential diagnoses included infectious, inflammatory, and neoplastic origins. Definitive antemortem diagnosis was not possible, and the macaque''s condition worsened despite supportive care. Necropsy findings included a mandibular mass that was locally invasive and expansile, encompassing approximately 80% of the left mandibular bone. The mass replaced portions of the soft palate, hard palate, sinuses, ear canal, and the caudal–rostral calvarium and masseter muscle. Histologically, the mass was a neoplasm that was poorly circumscribed, unencapsulated, and infiltrative invading regional bone and soft tissue. The mass consisted of polygonal squamous epithelial cells with intercellular bridging that breached the epithelial basement membrane and formed invasive nests, cords, and trabeculae. The mitotic rate averaged 3 per 400× field of view, with occasional bizarre mitotic figures. Epithelial cells often exhibited dyskeratosis, and the nests often contained compact lamellated keratin (keratin pearls). The neoplasm was positive via immunohistochemistry for pancytokeratin, variably positive for S100, and negative for vimentin, smooth muscle actin, and desmin. The gross, histologic, and immunohistochemical findings were consistent with an aggressive oral squamous cell carcinoma. The neoplasm was negative via PCR for papilloma virus. In general, neoplasia in macaques is rare. Although squamous cell carcinomas are one of the most common oral neoplasia in many species, to our knowledge this case represents the first reported oral squamous cell carcinoma in a pigtailed macaque.Abbreviation: SCC, squamous cell carcinomaSquamous cell carcinomas (SCC) are one of the most commonly reported oral tumors. They are characterized as firm, nodular to irregular, soft-tissue masses that are often ulcerated.6 These tumors are frequently highly invasive to local bone and muscle and occasionally metastasize to local and regional lymph nodes.6 Histologically, SCC are characterized by keratin pearls, intercellular bridges, and positive cytokeratin staining on immunohistochemistry.6,18 SCC have been associated with carcinogen exposure (such as bracken fern toxicosis in cattle), actinic radiation, and rarely with papillomatosis.8In general, neoplastic diseases are rare in nonhuman primates, and SCC and lymphoma are the 2 most commonly reported oral neoplasms in these species.3 SCC have most commonly been reported in rhesus macaques (Macaca mullata) and baboons (Papio spp.) among nonhuman primate species.9 In rhesus macaques, SCC has occurred in the oral cavity,9 integument,9,22 esophagus,9 stomach,21 lung,9,13 prepuce–penis,10 cervix,9 uterus,9 and eye.9 These neoplasms have also been reported to occur in cynomolgus macaques,14,15,17,19 marmosets, squirrel monkeys, tree shrews, capuchins, tamarins, black spider monkeys, sooty mangabies, a spectacled langur, and an orangutan.9 No report describing SCC in a pig-tailed macaque has been published previously. The oral cavity is the most common site of SCC in nonhuman primates, and metastasis occurs in approximately 23% of cases.9 The average age at diagnosis of oral SCC in rhesus macaques is 17.6 y.22 In baboons, SCC is the third most common neoplasm, after intestinal adenocarcinoma and lymphosarcoma.4 The following case report describes an oral SCC in a pregnant pig-tailed macaque.  相似文献   

15.
Bone neoplasms in baboons (Papio spp) are rare, with only one confirmed case of osteosarcoma previously described in the literature. Over a 12-y period, 6 baboons at a national primate research center presented with naturally occurring osteosarcoma; 3 lesions affected the appendicular skeleton, and the remaining 3 were in the head (skull and mandible). The 6 cases presented were identified in members of a large outdoor-housed breeding colony. The subjects were not genetically related or exposed to the same research conditions. Diagnoses were made based on the presentation and radiographic findings, with histologic confirmation.Neoplasia remains a highly prevalent condition across the majority of species. A recent survey of a large baboon colony identified 395 neoplasms among 4297 animals.6 The most common neoplasms documented in NHP include lymphosarcoma, adenocarcinoma, and squamous cell carcinoma.8 Tumors involving the musculoskeletal system are much rarer than are the other previously mentioned types. The musculoskeletal neoplasms reported most prominently in the literature are osteoma, osteosarcoma, odontoma, and various types of myxoma, with Macaca spp being the NHP affected most often.5 However, this apparent prevalence may be artifactual due to the use of far more animals of Macaca spp compared with other NHP species.Osteosarcoma is an infrequently documented neoplasm among NHP, and it is particularly rare in baboons (Papio spp.). Combined-type osteosarcoma in a rhesus macaque,4 extraosseous osteosarcoma in a rhesus macaque,17 and osteoblastic osteosarcoma in a gray mouse lemur have been reported.18 Among 4 reported cases of bone tumors in baboons, only one was confirmed as osteosarcoma and involved the mandibular ramus of a male baboon.8,12,24 Another neoplasm, identified on the distal aspect of the right ulna of a baboon, initially was described in a review article as a giant cell tumor22 but was later referred to as a fibrosarcoma23 and then as an osteosarcoma,19 thus making the confirmed diagnosis unclear. The remaining 2 known cases of bone tumors in baboons were osteomas present in the tibia and femur.8,12 Three other osteosarcomas were included in reviews of pathology from the Southwest National Primate Research Center (San Antonio, TX), but detailed clinical and pathologic information was not described.6,7,9  相似文献   

16.
Superficial decidualization of the endometrial stroma is an essential feature of the implantation stage of pregnancy in rhesus macaques and other primates. Decidualization involves proliferation of the endometrial stromal cells, with differentiation into morphologically distinct decidual cells. Previous reports involving nonpregnant rhesus monkeys have described localized and widespread endometrial decidualization in response to administration of progesterone and synthetic progestogens. Ectopic decidua or ‘deciduosis’ describes the condition in which groups of decidual cells are located outside of the endometrium, most often in the ovaries, uterus and cervix but also in various other organs. In humans, most cases of deciduosis are associated with normal pregnancy, and ectopic decidua can be found in the ovary in nearly all term pregnancies. Here we describe pronounced endometrial decidualization in 2 rhesus macaques. Both macaques had been treated long-term with medroxyprogesterone acetate for presumed endometriosis, which was confirmed in one of the macaques at postmortem examination. In one animal, florid extrauterine and peritoneal serosal decidualization was admixed multifocally with carcinomatosis from a primary colonic adenocarcinoma. Cells constituting endometrial and serosal decidualization reactions were immunopositive for the stromal markers CD10, collagen IV, smooth muscle actin, and vimentin and immunonegative for cytokeratin. In contrast, carcinomatous foci were cytokeratin-positive. To our knowledge, this report describes the first cases of serosal peritoneal decidualization in rhesus macaques. The concurrent presentation of serosal peritoneal decidualization with carcinomatosis is unique.Abbreviations: GnRH, gonadotropin-releasing hormone; PAS, periodic acid–Schiff; SMA, smooth-muscle actinSuperficial decidualization of the endometrial stroma is an essential feature of the implantation stage of pregnancy in rhesus macaques and other primates.13,27,29,37 This process typically begins, and is most prominent, adjacent to the spiral arteries, eventually expanding to affect the endometrium uniformly.35 The endometrial stroma surrounds and supports the endometrial glands and is composed mainly of endometrial stromal cells and blood vessels.35 Decidualization involves proliferation of the endometrial stromal cells, with differentiation into morphologically distinct decidual cells.7,27,38 Endometrial stromal cells transform into large, polyhedral, cytoplasm-rich cells with large amounts of stored glycogen and are often binucleated or polyploid in character.6,13,27,30,35 Ultrastructurally, decidualized cells have numerous ribosomes, prominent rough endoplasmic reticulum and Golgi complexes, and cytoplasmic accumulation of glycogen and lipid droplets.13,35 Consistent with their stromal origin, decidualized cells express mesenchymal immunohistochemical markers, such as vimentin, desmin, and muscle-specific actin.6,7,14,16,20,22Initiation of decidualization by attachment of the blastocyst to the uterine epithelium depends on previous sensitization by progesterone secretion, after a brief priming by estrogen.12,13,27 Estrogen and progesterone regulate a series of complex interactions at the interface between the developing embryo and the cells in the stromal compartment, leading to the formation of a differentiated maternal tissue (decidua) that supports embryo growth and maintains early pregnancy.27 Postovulatory levels of circulating progesterone increase and help maintain the differentiation of decidual cells.7,13,33,37,38Ectopic decidua or ‘deciduosis’ describes the condition in which groups of decidual cells reside outside of the endometrium, most often in the ovaries, uterus, and cervix; the fallopian tubes, peritoneum, omentum, diaphragm, liver, skin, spleen, appendix, abdominal–pelvic lymph nodes, renal pelvis, and lungs of women have also been reported as affected.6,14,18,20,22,28,29,38 In humans, most cases of deciduosis are associated with normal pregnancy, and ectopic decidua have been reported in the ovary in 90.5% to 100% of term pregnancies.6-8,14,20,22,28-30,38 Occasional cases in nonpregnant or postmenopausal women have been attributed to progesterone-secreting active corpora lutea, progesterone secretion by the adrenal cortex, trophoblastic disease, exogenous progestational agents, and pelvic irradiation.6-8,14,18,20,22,28,38 Deciduosis is usually an incidental finding that regresses postpartum within 4 to 6 wk; rarely, florid reactions have been reported to cause peritonitis, adhesions, hydronephrosis and hematuria, acute bowel obstruction or perforation (or both), abdominal pain mimicking appendicitis, massive and occasionally fatal hemoperitoneum, vaginal bleeding, and pneumothorax.6,7,14,18,20,22,28,29,31Previous reports involving nonpregnant rhesus macaques have described localized and widespread endometrial decidualization in response to the administration of progesterone, synthetic progestogens, or progesterone-releasing bioactive intrauterine devices and intravaginal rings and have referred to these changes as ‘pseudodecidualization’ to indicate the absence of pregnancy in these animals.12,33,35,37 In macaques given low (but superphysiologic) levels of progestogens, decidual changes have been noted in localized regions (around spiral arteries and underneath superficial epithelium), whereas high doses of progesterone or synthetic progestagens can cause a more pronounced and extensive reaction.35In cynomolgus macaques, extrauterine decidual cell plaques are rare histologic findings in the subcoelomic mesenchyme of the ovarian cortex.8,30 Despite the frequency of the condition in women, deciduosis is postulated to be a rarely documented lesion in primates because it is most often observed in conjunction with pregnancy, and pregnant cynomolgus macaques are seldom used in toxicity studies.8 Here we describe the pronounced endometrial decidualization of 2 rhesus macaques, one of which also had florid extrauterine and peritoneal decidualization that was admixed multifocally with carcinomatosis. Both macaques had been treated long-term with medroxyprogesterone acetate for presumed endometriosis, which was confirmed in one of the macaques at postmortem examination. To our knowledge, this report describes the first cases of peritoneal decidualization in rhesus macaques as well as the concurrent occurrence of carcinomatosis, endometriosis and peritoneal decidualization in a macaque. The extensive intermixing of the cell populations presented a diagnostic challenge at pathologic examination, and accurate diagnosis was achieved only through the use of multiple immunohistochemical markers.  相似文献   

17.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

18.
We here report a spontaneous case of meningoencephalitis due to Listeria monocytogenes in an adult primiparous rhesus macaque (Macaca mulatta) during an outbreak of listeriosis in an outdoor enclosure. Clinical signs included tremors, abnormal posture, and altered mental status. Hematology and analyses of cerebrospinal fluid were consistent with bacterial infection. Pure cultures of L. monocytogenes were recovered from the placenta–abortus, cerebrospinal fluid, and brain tissue. The macaque did not respond to treatment and was euthanized. Histopathologic examination of the brain revealed acute meningoencephalitis. This case represents an unusual clinical and pathologic presentation of listeriosis in a nonhuman primate in which the dam and fetus both were affected.Listeria monocytogenes is a ubiquitous, facultative anaerobic, intracellular gram-positive coccobacillus. This bacterium is found in diverse environments including (but not limited to) soil, water, plant matter, food items, and the intestinal tract of mammalian hosts.15,18 The organism is environmentally resistant, being able to survive in dried media for several months and in moist soil for up to a year.15 L. monocytogenes is the causative agent of listeriosis, a bacterial infection that has a worldwide distribution and affects a wide range of mammals and birds, including human beings.In people, L. monocytogenes is a relatively uncommon foodborne pathogen; its abilities to survive food processing and grow in cold conditions allow it to persist in appropriately stored or refrigerated foods.2 In people, listeriosis occurs both sporadically and as large outbreaks,18 generally comprising 3 separate syndromes with clinical manifestations ranging from mild to life-threatening.35 The most common form is seen in immunocompetent, nonpregnant adults as a febrile gastroenteritis.2,18,21 The other 2 forms, which occur in fetuses and immunocompromised patients, are more severe.19,21 In pregnant women, maternal listeriosis is asymptomatic or causes mild, flu-like symptoms, but the bacterium''s ability to cross the placenta and the blood–brain barrier of the fetus results in neonatal septicemia, meningitis, abortion, and stillbirth.16 In elderly and immunocompromised patients, septicemia and meningoencephalitis are life-threatening manifestations of literiosis.26 The worldwide case fatality rate varies widely among countries, sometimes exceeding 50% despite what is considered to be appropriate antibiotic therapy.18 In 2009, the Centers for Disease Control reported 524 cases of listeriosis in the United States, which were associated with a 19% resulting in death.4In ruminants, listeriosis is also known as ‘circling disease’ and ‘silage disease.’8,18,21 Foodborne infection with L. monocytogenes is well described, and many studies have shown that spoiled silage may be a source of listeria outbreaks.8,18 Rhombencephalitis and diffuse meningoencephalitis are the most recognized forms of the infection in ruminants; sporadic abortion is reported also.22 Clinical signs of listeria encephalitis in cattle, sheep, and goats are characterized by unilateral or bilateral brainstem dysfunction and cranial nerve deficits. In sheep and goats, the course of the disease is acute, but the disease in cattle has a more chronic progression, with neurologic manifestations that can last 4 to 14 d.1,22In rabbits, infection with L. monocytogenes is characterized by abortion in pregnant does or sudden death; neurologic signs are rare.1 In poultry, an acute form with septicemia and sudden death occurs in adults, in contrast to a subacute–chronic form, with encephalitis, in the young.6The literature on L. monocytogenes in nonhuman primates is sparse5,11,17,33 and more recently limited to experimental infection of pregnant animals. In pregnant rhesus macaques (Macaca mulatta), experimental infection during the last trimester of gestation can cause stillbirth with no other clinical signs.23,24 In our colony, however, infection with L. monocytogenes is endemic. Every year, several spontaneous abortions or stillbirths in our outdoor colony are caused by infection of the dam with this organism. Culture of L. monocytogenes from both the abortus–fetus and placenta are well documented. As described in the literature,23,24 the dams in our colony do not demonstrate any clinical signs prior to the abortion or stillbirth.During the winter to spring of 2011, one of our outdoor housing enclosures experienced an outbreak of listeriosis. This outside corral housed 100 rhesus macaques in a social group that included 42 reproductive females. Of these reproductive females, 37 (88%) were confirmed pregnant by abdominal palpation or ultrasonography or both. From January 2011 to May 2011, 19 (51%) stillbirths and neonatal deaths (in infants younger than 3 d) were reported in this enclosure; 13 (68%) of these tissues (placenta, 3; fetal lungs, 8; fetal peritoneum, 2) were culture-positive for L. monocytogenes. In all cases except the one presented here, the dam did not manifest any clinical signs prior to or after the delivery of a stillborn or premature birth with neonatal death.Here we describe an unusual case of listeriosis in a primiparous pregnant female rhesus macaque that manifested severe neurologic impairment and intrautero death of the fetus.  相似文献   

19.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

20.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号