首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Advancements in the field of proteomics have provided great opportunities for the development of diagnostic and therapeutic tools against human diseases. In this study, we analyzed haptoglobin and amyloid A protein levels of vivax malaria patients with combinations of depletion of the abundant plasma proteins, 2-dimensional gel electrophoresis (2-DE), image analysis, and mass spectrometry in the plasma between normal healthy donors and vivax malaria patients. The results showed that the expression level of haptoglobin had become significantly lower or undetectable in the plasma of vivax malaria patients due to proteolytic cleavage when compared to healthy donors on 2-DE gels. Meanwhile, serum amyloid A protein was significantly increased in vivax malaria patient''s plasma with high statistical values. These 2 proteins are common acute phase reactants and further large scale evaluation with a larger number of patient''s will be necessary to establish the possible clinical meaning of the existential changes of these proteins in vivax malaria patients. However, our proteomic analysis suggests the feasible values of some plasma proteins, such as haptoglobin and serum amyloid A, as associating factor candidates for vivax malaria.  相似文献   

2.
细胞因子在ARDS发病机制中的作用   总被引:10,自引:0,他引:10  
细胞因子是由多种细胞产生的多肽或低分子糖蛋白,在人体内含量极微,在pg水平就发挥作用。作为特异性免疫反应和非特异性免疫反应的蛋白质,细胞因子以自分泌、旁分泌、或内分泌方式产生,与相应的细胞表面受体结合,在局部或全身发挥复杂的生物学效应,它们的代谢异常和疾病的发生、发展有着密切的关系。有些细胞因子已应用于临床的生物学治疗,具有深远的临床应用价值,故对细胞因子的研究将是一个越来越重要的课题。急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)发病机制错综复杂,大量临床和实验室研究证明多种效应细胞释放的炎症介质是造成ARDS的"中心环节",其中TNF-α、IL-1、IL-8、IL-10、CXC趋化因子等细胞因子在ARDS发病中的作用尤为重要。本文就细胞因子在ARDS发病机制中的作用做一综述。  相似文献   

3.
冯博 《中国实验动物学报》2009,17(3):216-218,I0006
目的建立黄磷及其化合物急性吸入致大鼠急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)的模型。方法健康SD大鼠48只随机分为对照组以及实验组(0、4、12、24、48 h时间点处死)。采用自制染毒装置,间歇染毒形成ALI/ARDS模型。观察ALI/ARDS大鼠动脉血气分析以及肺系数和肺组织病理变化。结果肺损伤后大鼠动脉血气分析以及肺组织病理改变明显恶化,肺系数较对照组明显增大。结论成功地建立了黄磷及其化合物急性吸入致大鼠ALI/ARDS的模型,为黄磷及其化合物吸入中毒的防治研究提供良好实验基础,同时也适用于其他气体吸入致ARDS的实验研究。  相似文献   

4.
5.
SP-A, the major protein component of pulmonary surfactant, is absent in exogenous surfactants currently used in clinical practice. However, it is thought that therapeutic properties of natural surfactants improve after enrichment with SP-A. The objective of this study was to determine SP-A effects on physical properties and surface activity of a new synthetic lung surfactant based on a cationic and hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK, KL(4). We have analyzed the interaction of SP-A with liposomes consisting of DPPC/POPG/PA (28:9:5.6, w/w/w) with and without 0.57 mol % KL(4) peptide. We found that SP-A had a concentration-dependent effect on the surface activity of KL(4)-DPPC/POPG/PA membranes but not on that of an animal-derived LES. The surface activity of KL(4)-surfactant significantly improved after enrichment with 2.5-5 wt % SP-A. However, it worsened at SP-A concentrations > or =10 wt %. This was due to the fluidizing effect of supraphysiological SP-A concentrations on KL(4)-DPPC/POPG/PA membranes as determined by fluorescence anisotropy measurements, calorimetric studies, and confocal fluorescence microscopy of GUVs. High SP-A concentrations caused disappearance of the solid/fluid phase coexistence of KL(4)-surfactant, suggesting that phase coexistence might be important for the surface adsorption process.  相似文献   

6.
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.  相似文献   

7.
The seventh human coronavirus SARS-CoV2 belongs to the cluster of extremely pathogenic coronaviruses including SARS-CoV and MERS-CoV, which can cause fatal lower respiratory tract infection. Likewise, SARS-CoV2 infection can be fatal as the disease advances to pneumonia, followed by acute respiratory distress syndrome (ARDS). The development of lethal clinical symptons is associated with an exaggerated production of inflammatory cytokines, referred to as the cytokine storm, is a consequence of a hyperactivated immune response aginst the infection. In this article, we discuss the pathogenic consequences of the cytokine storm and its relationship with COVID-19 associated risk factors. The increased pro-inflammatory immune status in patients with risk factors (diabetes, hypertension, cardiovascular disease, COPD) exacerbates the Cytokine-storm of COVID-19 into a ‘Cytokine Super Cyclone’. We also evaluate the antiviral immune responses provided by BCG vaccination and the potential role of ‘trained immunity’ in early protection against SARS-CoV2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号