首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) play a central role in innate immunity and antiviral responses. In this study, we investigated the production of alpha interferon (IFN-α) and inducible chemokines by human monocyte-derived dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) infected with West Nile virus (WNV), an emergent pathogen whose infection can lead to severe cases of encephalitis in the elderly, children, and immunocompromised individuals. Our experiments demonstrated that WNV grown in mammalian cells (WNVVero) was a potent inducer of IFN-α secretion in pDCs and, to a lesser degree, in mDCs. The ability of WNVVero to induce IFN-α in pDCs did not require viral replication and was prevented by the treatment of cells with bafilomycin A1 and chloroquine, suggesting that it was dependent on endosomal Toll-like receptor recognition. On the other hand, IFN-α production in mDCs required viral replication and was associated with the nuclear translocation of IRF3 and viral antigen expression. Strikingly, pDCs failed to produce IFN-α when stimulated with WNV grown in mosquito cells (WNVC7/10), while mDCs responded similarly to WNVVero or WNVC7/10. Moreover, the IFN-dependent chemokine IP-10 was produced in substantial amounts by pDCs in response to WNVVero but not WNVC7/10, while interleukin-8 was produced in greater amounts by mDCs infected with WNVC7/10 than in those infected with WNVVero. These findings suggest that cell-specific mechanisms of WNV recognition leading to the production of type I IFN and inflammatory chemokines by DCs may contribute to both the innate immune response and disease pathogenesis in human infections.  相似文献   

2.
West Nile virus (WNV) is a single‐stranded, positive sense RNA virus of the family Flaviviridae and is a significant pathogen of global medical importance. Flavivirus replication is known to be exclusively cytoplasmic, but we show here for the first time that access to the nucleus of the WNV strain Kunjin (WNVKUN) RNA‐dependent RNA polymerase (protein NS5) is central to WNVKUN virus production. We show that treatment of cells with the specific nuclear export inhibitor leptomycin B (LMB) results in increased NS5 nuclear accumulation in WNVKUN‐infected cells and NS5‐transfected cells, indicative of nucleocytoplasmic shuttling under normal conditions. We used site‐directed mutagenesis to identify the nuclear localisation sequence (NLS) responsible for WNVKUN NS5 nuclear targeting, observing that mutation of this NLS resulted in exclusively cytoplasmic accumulation of NS5 even in the presence of leptomycin B. Introduction of NS5 NLS mutations into FLSDX, an infectious clone of WNVKUN, resulted in lethality, suggesting that the ability of NS5 to traffic into the nucleus in integral to WNVKUN replication. This study thus shows for the first time that NLS‐dependent trafficking into the nucleus during infection of WNVKUN NS5 is critical for viral replication. Excitingly, specific inhibitors of NS5 nuclear import reduce WNVKUN virus production, proving the principle that inhibition of WNVKUN NS5 nuclear import is a viable therapeutic avenue for antiviral drug development in the future.  相似文献   

3.
The cytoplasmic replication of positive-sense RNA viruses is associated with a dramatic rearrangement of host cellular membranes. These virus-induced changes result in the induction of vesicular structures that envelop the virus replication complex (RC). In this study, we have extended our previous observations on the intracellular location of West Nile virus strain Kunjin virus (WNVKUN) to show that the virus-induced recruitment of host proteins and membrane appears to occur at a pre-Golgi step. To visualize the WNVKUN replication complex, we performed three-dimensional (3D) modeling on tomograms from WNVKUN replicon-transfected cells. These analyses have provided a 3D representation of the replication complex, revealing the open access of the replication complex with the cytoplasm and the fluidity of the complex to the rough endoplasmic reticulum. In addition, we provide data that indicate that a majority of the viral RNA species housed within the RC is in a double-stranded RNA (dsRNA) form.West Nile virus (WNV) belongs to the Flaviviridae, which is a large family of enveloped, positive-strand RNA viral pathogens that are responsible for causing severe disease and mortality in humans and animals each year. The Australian WNV strain Kunjin virus (WNVKUN) is a relatively low-pathogenic virus that is closely related to the pathogenic WNV strain New York 99 (WNVNY99), the causative agent of the 1999 epidemic of encephalitis in New York City (11).It has become increasingly known that the replication of most, if not all, positive-sense RNA viruses, whether they infect plants, insects, or humans, is associated with dramatic membrane alterations resulting in the formation of membranous microenvironments that facilitate efficient virus replication. In most cases the induced membrane structures house the actively replicating viral RNA and comprise 70- to 100-nm membrane “vesicles” (sometimes referred to as spherules). Although this distinct morphology is shared across virus families, the cellular origins of these membranes is diverse: the endoplasmic reticulum (ER), mitochondria, peroxisomes, and trans-Golgi membranes have been implicated in different viral systems (1, 8, 13, 23, 31, 38, 41, 45). This diversity implies that the processes involved in inducing the membrane vesicles/spherules are shared, rather than the composition of the membrane itself, although the exact purpose for utilizing membranes derived from different cellular compartments is still not completely resolved or understood.The replication of the flavivirus WNVKUN is associated with the induction of morphologically distinct membrane structures that have defined roles during the WNVKUN replication cycle. Three well-defined structures can be seen as large convoluted membranes (CM), paracrystalline arrays (PC), or membrane sacs containing small vesicles, termed vesicle packets (VP) (18, 20, 48). Based on localization studies with viral proteins of specific functions, we observed that components of the virus protease complex (namely, nonstructural protein 3 [NS3] with cofactor NS2B) localize specifically to the CM/PC, whereas viral double-stranded RNA (dsRNA) and the viral RNA-dependent RNA polymerase (RdRp) NS5 localized primarily to VP (20-22, 47, 48). Additionally, we observed that the CM and PC originate from and are modified membranes of the intermediate compartment (IC) and rough endoplasmic reticulum (RER), whereas the VP appear to be derived from trans-Golgi network (TGN) membranes (19). Recently, we have found that the WNVKUN NS4A protein by itself has the intrinsic capacity to induce the CM and PC structures (35), a property also subsequently shown for Dengue virus (DENV) NS4A (29). Additionally, we have shown that upon WNV infection cellular cholesterol and cholesterol-synthesizing proteins are redistributed to the virus-induced membranes and that this redistribution severely disrupted the formation of cholesterol-rich microdomains (23). Furthermore, we have shown that the membranous structures induced during WNV replication provide partial protection of the WNV replication components from the interferon (IFN)-induced antiviral MxA protein, suggesting that the distinct compartmentalization of viral replication and components of the cellular antiviral response may be an evolutionary mechanism by which flaviviruses can protect themselves from host surveillance (6).In this study we focused on three-dimensional (3D) modeling to give insight into the 3D structure of the VP and provide evidence of how these complexes are organized and formed within the RER membrane. These results add valuable information to our understanding of how the WNV replication complex (RC) functions.  相似文献   

4.
BackgroundBreathing the inert gas Xenon (Xe) enhances hypothermic (HT) neuroprotection after hypoxia-ischemia (HI) in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added) or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7) rats, showed that the combination of mild HT (35°C) and low Xe concentration (20%), both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study.Design/MethodsAfter the HI-insult 120 pups were exposed to different post-insult treatments: three temperatures (normothermia (NT) NT37°C, HT35°C, HT32°C) or Xe concentrations (0%, 20% or 50%) starting either immediately or with a 4 h delay. To assess the synergistic potency of Xe-HT, a second set (n = 101) of P7 pups were exposed to either HT35°C+Xe0%, NT+Xe20% or a combination of HT35°C+Xe20% starting with a 4 h delay after the insult. Brain damage was analyzed using relative hemispheric (ligated side/unligated side) brain tissue area loss after seven day survival.ResultsImmediate HT32°C (p = 0.042), but not HT35°C significantly reduced brain injury compared to NT37°C. As previously shown, adding immediate Xe50% to HT32°C increased protection. Neither 4 h-delayed Xe20%, nor Xe50% at 37°C significantly reduced brain injury (p>0.050). In addition, neither 4 h-delayed HT35°C alone, nor HT35°C+Xe20% reduced brain injury. We found no synergistic effect of the combined treatments in this experimental model.ConclusionsCombining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20%) did not exert neuroprotection when combined, and therefore did not show a synergistic treatment effect.  相似文献   

5.
Emerging extensively drug-resistant (XDR) Klebsiella pneumoniae due to the production of β-lactamases and porin loss is a substantial worldwide concern. This study aimed to elucidate the role of outer membrane porin (OMP) loss, AmpC, and carbapenemases among extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae strains with XDR phenotype. This study analyzed 79 K. pneumoniae from several clinical sources and detected ESBLs in 29 strains co-harbored with other β-lactamases using standard microbiological practices and phenotypic procedures. Minimum inhibitory concentrations (MICs) were determined against several antibiotics using Microscan WalkAway plus. OMP analysis was carried out using sodium dodecyl sulfate–polyacrylamide gel electrophoresis. ESBL, AmpC, and carbapenemase genes were detected using molecular methods. The microbiological analysis discovered 29 (36.7%) ESBL strains of K. pneumoniae, which showed the co-existence of 7 (24.1%) AmpC β-lactamases and 22 (75.9%) carbapenemases. Porin loss of OmpK35 was observed in 13 (44.8%) and OmpK36 in 8 (27.5%) K. pneumoniae strains. The strains were significantly associated with the intensive care unit (ICU) (p = 0.006) and urinary sources (p = 0.004). The most commonly detected gene variants in each β-lactamase class included 16 (55.2%) blaCTX-M−1, 7 (100%) blaCYM-2, 11 (50%) blaNDM-1, and integron-1 was detected in 21/29 (72.4%) strains. MICs of cephalosporin, fluoroquinolone, carbapenem, aminoglycoside, and β-lactam combinations demonstrated a high number of XDR strains. Tigecycline (2 µg/mL MIC50 and >32 µg/mL MIC90) and colistin (1 µg/mL MIC50 and 8 µg/mL MIC90) presented lower resistance. ESBL K. pneumoniae strains with OmpK35 and OmpK36 porin loss demonstrate conglomerate resistance mechanisms with AmpC and carbapenemases, leading to emerging XDR and pan drug resistance.  相似文献   

6.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35°C and/or freeze-thawing (48 h at −20°C; 4 h at 4°C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35°C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4°C, 2 h at 25°C, or 1 h at 35°C or 6 h at 35°C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35°C plus freeze-thawing, SA plus 12 h at 25°C plus freeze-thawing, SA plus 6 h at 35°C, and SA plus 4 h at 35°C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35°C. Cider with no added organic acids treated with either 6 h at 35°C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

7.
In this study, we investigated the potential for aflatoxin B1 (AFB1) and B2 (AFB2) production in rice grain by 127 strains of Aspergillus flavus isolated from rice grains collected from China. These strains were inoculated onto rice grains and incubated at 28 °C for 21 days. AFB1 and AFB2 were extracted and quantified by high-performance liquid chromatography coupled with fluorescence detection. Among the tested strains, 37% produced AFB1 and AFB2 with levels ranging from 175 to 124 101 μg kg−1 for AFB1 and from not detected to 10 329 μg kg−1 for AFB2. The mean yields of these isolates were 5884 μg kg−1 for AFB1 and 1968 μg kg−1 for AFB2. Overall, most of the aflatoxigenic strains produced higher levels of AFB1 than AFB2 in rice. The obtained information is useful for assessing the risk of aflatoxin contamination in rice samples.  相似文献   

8.

Background

West Nile virus (WNV) can persist long term in the brain and kidney tissues of humans, non-human primates, and hamsters. In this study, mice were infected with WNV strain H8912, previously cultured from the urine of a persistently infected hamster, to determine its pathogenesis in a murine host.

Methodology/Principal Findings

We found that WNV H8912 was highly attenuated for neuroinvasiveness in mice. Following a systemic infection, viral RNA could be detected quickly in blood and spleen and much later in kidneys. WNV H8912 induced constitutive IL-10 production, upregulation of IFN-β and IL-1β expression, and a specific IgM response on day 10 post-infection. WNV H8912 persisted preferentially in kidneys with mild renal inflammation, and less frequently in spleen for up to 2.5 months post infection. This was concurrent with detectable serum WNV-specific IgM and IgG production. There were also significantly fewer WNV- specific T cells and lower inflammatory responses in kidneys than in spleen. Previous studies have shown that systemic wild-type WNV NY99 infection induced virus persistence preferentially in spleen than in mouse kidneys. Here, we noted that splenocytes of WNV H8912-infected mice produced significantly less IL-10 than those of WNV NY99-infected mice. Finally, WNV H8912 was also attenuated in neurovirulence. Following intracranial inoculation, WNV persisted in the brain at a low frequency, concurrent with neither inflammatory responses nor neuronal damage in the brain.

Conclusions

WNV H8912 is highly attenuated in both neuroinvasiveness and neurovirulence in mice. It induces a low and delayed anti-viral response in mice and preferentially persists in the kidneys.  相似文献   

9.
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35°C for 24 h in paper disks. At an inoculum level of 107 CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 103 to 104 CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 102 CFU/disk). After 22 to 24 months of subsequent storage at 4°C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (103 to 104 CFU/disk). In contrast to the case for storage at 4°C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25°C and 35°C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70°C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25°C.  相似文献   

10.
The host determinants that contribute to attenuation of the naturally occurring nonpathogenic strain of West Nile virus (WNV), the Kunjin strain (WNV(KUN)), remain unknown. Here, we show that compared to a highly pathogenic North American strain, WNV(KUN) exhibited an enhanced sensitivity to the antiviral effects of type I interferon. Our studies establish that the virulence of WNV(KUN) can be restored in cells and mice deficient in specific interferon regulatory factors (IRFs) or the common type I interferon receptor. Thus, WNV(KUN) is attenuated primarily through its enhanced restriction by type I interferon- and IRF-3-dependent mechanisms.  相似文献   

11.
Protoplasts and intact chloroplasts isolated from Agropyron smithii Rybd. were utilized in an effort to determine the limiting factor(s) for photosynthesis at supraoptimal temperatures. Saturated CO2-dependent O2 evolution had a temperature optimum of 35°C for both protoplasts and intact chloroplasts. A sharp decline in activity was observed as assay temperature was increased above 35°C, and at 45°C only 20% of the maximal rate remained. The temperature optimum for 3-phosphoglycerate reduction by intact chloroplasts was 35°C. Above this temperature, 3-phosphoglycerate reduction was more stable than CO2-dependent O2 evolution. Reduction of nitrite in coupled intact chloroplasts had a temperature optimum of 40°C with only slight variation in activity between 35°C and 45°C. Reduction of nitrite in uncoupled chloroplasts had a temperature optimum of 40°C, but increasing the assay temperature to 45°C resulted in a complete loss of activity. Reduction of p-benzoquinone by protoplasts and intact chloroplasts had a temperature optimum of 32°C when measured in the presence of dibromothymoquinone. This photosystem II activity exhibited a strong inhibition of O2 evolution as assay temperature increased above the optimum. It is concluded that, below the temperature optimum, ATP and reductant were not limiting photosynthesis in these systems or intact leaves. Above the temperature optimum, photosynthesis in these systems is limited in part by the phosphorylation potential of the stromal compartment and not by the available reductant.  相似文献   

12.
The fatty acid composition of Thermus spp., including T. aquaticus ATCC 25104, T. thermophilus DSM 579, T. flavus DSM 674, and seven wild strains was examined. Organisms were tested at a minimum of either 35, 40, or 45°C and at an optimum of 60 or 70°C. Total fatty acid content per dry weight of cells varied between 1.2 and 3.7%, and the quantity of fatty acids was higher at the high temperature range in the majority of strains. At the optimum temperature, strains could be assigned to three chemotaxonomic groups with reference to the ratio of iso C15:0/iso C17:0. In six of the strains the ratio of iso C15:0/iso C17:0 remained unchanged at the minimum temperature, whereas in four strains the ratio was reversed. The proportion of the C15:0 and C17:0 isobranched acids was decreased and the proportion of anteisobranched fatty acids, namely anteiso C15:0, anteiso C17:0, and anteiso C17:1, was increased at the lower temperature range. Some changes were seen in the levels of the n-C16:0 and iso C16:0 acids, but these were strain specific.  相似文献   

13.
14.
The behavior of Bacillus anthracis Sterne spores in sterile raw ground beef was measured at storage temperatures of 2 to 70°C, encompassing both bacterial growth and death. B. anthracis Sterne was weakly inactivated (−0.003 to −0.014 log10 CFU/h) at storage temperatures of 2 to 16°C and at temperatures greater than and equal to 45°C. Growth was observed from 17 to 44°C. At these intermediate temperatures, B. anthracis Sterne displayed growth patterns with lag, growth, and stationary phases. The lag phase duration decreased with increasing temperature and ranged from approximately 3 to 53 h. The growth rate increased with increasing temperature from 0.011 to 0.496 log10 CFU/h. Maximum population densities (MPDs) ranged from 5.9 to 7.9 log10 CFU/g. In addition, the fate of B. anthracis Ames K0610 was measured at 10, 15, 25, 30, 35, 40, and 70°C to compare its behavior with that of Sterne. There were no significant differences between the Ames and Sterne strains for both growth rate and lag time. However, the Ames strain displayed an MPD that was 1.0 to 1.6 times higher than that of the Sterne strain at 30, 35, and 40°C. Ames K0610 spores were rapidly inactivated at temperatures greater than or equal to 45°C. The inability of B. anthracis to grow between 2 and 16°C, a relatively low growth rate, and inactivation at elevated temperatures would likely reduce the risk for recommended ground-beef handling and preparation procedures.  相似文献   

15.

Background

Hyperglycemia increases the risk of gastric cancer in H. pylori-infected patients. High glucose could increase endothelial permeability and cancer-associated signaling. These suggest high glucose may affect H. pylori or its infected status.We used two strains to investigate whether H. pylori growth, viability, adhesion and CagA-phosphorylation level in the infected-AGS cells were influenced by glucose concentration (100, 150, and 200 mg/dL).

Results

The growth curves of both strains in 200 mg/dL of glucose were maintained at the highest optimal density after 48 h and the best viability of both strains were retained in the same glucose condition at 72 h. Furthermore, adhesion enhancement of H. pylori was significantly higher in 200 mg/dL of glucose as compared to that in 100 and 150 mg/dL (p < 0.05). CagA protein also increased in higher glucose condition. The cell-associated CagA and phosphorylated-CagA was significantly increased in 150 and 200 mg/dL of glucose concentrations as compared to that of 100 mg/dL (p < 0.05), which were found to be dose-dependent.

Conclusion

Higher glucose could maintain H. pylori growth and viability after 48 h. H. pylori adhesion and CagA increased to further facilitate the enhancement of cell-associated CagA and phosphorylated CagA in higher glucose conditions.  相似文献   

16.
Using an open and a closed system of gas analysis, it was found that CO2 evolution in light and in darkness from plant leaves (sunflower, soybean, watermelon, eggplant, and jackbean) have a different response to temperature. While the rate of CO2 evolution in light increased with increasing temperature from 17 to 35° and then declined, the rate of CO2 evolution in darkness increased continuously up to 40°. The rate of CO2 evolution in light was affected by light intensity. At 1800 ft-c and below 35° the rate of CO2 evolution in light was greater than in darkness, but above 35° it became lower than in darkness. The Q10 for CO2 evolution in light was consistently lower than that in darkness.  相似文献   

17.
The mtDNA copy number can affect the function of mitochondria and play an important role in the development of diseases. However, there are few studies on the mechanism of mtDNA copy number variation and its effects in IS. The specific mechanism of mtDNA copy number variation is still unclear. In this study, mtDNA copy number of 101 IS patients and 101 normal controls were detected by qRT‐PCR, the effect of D‐loop variation on mtDNA copy number of IS patients was explored. Then, a TFAM gene KD‐OE PC12 cell model was constructed to explore the effect of mtDNA copy number variation on mitochondrial function. The results showed that the mtDNA copy number level of the IS group was significantly lower than that of the normal control group (< 0.05). The relative expression of TFAM gene mRNA in the cells of the OGD/R treatment group was significantly lower than that of the control group (< 0.05). In addition, after TFAM gene knockdown and over‐expression plasmids were transfected into HEK 293T cells, mtDNA copy number and ATP production level of Sh‐TFAM transfection group was significantly decreased (< 0.05), while mtDNA copy number and ATP production level of OE‐TFAM transfected group were significantly higher than that of blank control group and OE‐ctrl negative control group (< 0.01). Our study demonstrated that mitochondrial D‐loop mutation and TFAM gene dysfunction can cause the decrease of mtDNA copy number, thus affecting the mitochondrial metabolism and function of nerve cells, participating in the pathological damage mechanism of IS.  相似文献   

18.
Sucrose density gradient centrifugation of Paracoccus denitrificans strains ATCC 13543 and ATCC 17741 cell envelopes plus poly-β-hydroxybutyrate, isolated from organisms broken using a French pressure cell, revealed three bands of densities: I, 1.16 g/ml; II, 1.19 g/ml; III, 1.24 g/ml. On the basis of chemical and enzymatic assays and sodium dodecyl sulfate-polyacrylamide gel electrophoresis the bands were identified as: I, cytoplasmic membrane; II, poly-β-hydroxybutyrate; III, outer membrane plus poly-β-hydroxybutyrate. Poly-β-hydroxybutyrate was removed by increased low-speed centrifugation before deposition of cell envelopes. Density gradient centrifugation of cell envelopes gave a simple pattern of two bands, cytoplasmic and outer membranes. In both strains outer membranes showed a broad protein band at Mr 70 000–83 000 upon SDS-polyacrylamide gel electrophoresis of samples solubilized at 25°C, which was not present in samples solubilized at 100°C, where a single major band was present of Mr 32 000 in strain ATCC 13543 and 35 000 in strain ATCC 17741. The major outer membrane protein stained positively for lipid in both strains, as did an Mr 70 000 protein, which was the second major protein in strain ATCC 17741. The second major outer membrane protein of stain ATCC 13543 had an Mr of 20 000 in unheated samples but 23 000 in heated samples. This protein was not present in strain ATCC 17741. Quantitative data on the polar lipid compositions of cell envelope fractions are presented.  相似文献   

19.
Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.  相似文献   

20.

Background

Obese, non-acromegalic persons show lower growth hormone (GH) concentrations at fasting and reduced GH nadir during an oral glucose tolerance test (OGTT). However, this finding has never been studied with regard to whole-body insulin-sensitivity as a possible regulator.

Methods

In this retrospective analysis, non-acromegalic (NonACRO, n = 161) and acromegalic (ACRO, n = 35), non-diabetic subjects were subdivided into insulin-sensitive (IS) and –resistant (IR) groups according to the Clamp-like Index (CLIX)-threshold of 5 mg·kg−1·min−1 from the OGTT.

Results

Non-acromegalic IS (CLIX: 8.8±0.4 mg·kg−1·min−1) persons with similar age and sex distribution, but lower (p<0.001) body-mass-index (BMI = 25±0 kg/m2, 84% females, 56±1 years) had 59% and 70%, respectively, higher (p<0.03) fasting GH and OGTT GH area under the curve concentrations than IR (CLIX: 3.5±0.1 mg·kg−1·min−1, p<0.001) subjects (BMI = 29±1 kg/m2, 73% females, 58±1 years). When comparing on average overweight non-acromegalic IS and IR with similar anthropometry (IS: BMI: 27±0 kg/m2, 82% females, 58±2 years; IR: BMI: 27±0 kg/m2, 71% females, 60±1 years), but different CLIX (IS: 8.7±0.9 vs. IR: 3.8±0.1 mg·kg−1·min−1, p<0.001), the results remained almost the same. In addition, when adjusted for OGTT-mediated glucose rise, GH fall was less pronounced in IR. In contrast, in acromegalic subjects, no difference was found between IS and IR patients with regard to fasting and post-glucose-load GH concentrations.

Conclusions

Circulating GH concentrations at fasting and during the OGTT are lower in non-acromegalic insulin-resistant subjects. This study seems the first to demonstrate that insulin sensitivity rather than body-mass modulates fasting and post-glucose-load GH concentrations in non-diabetic non–acromegalic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号