首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently reported a reciprocal relationship between tumor necrosis factor alpha (TNFα) and insulin-like receptor growth factor binding protein 3 (IGFBP-3) in whole retina of normal and IGFBP-3 knockout mice. A similar relationship was also observed in cultured retinal endothelial cells (REC). We found that TNFα significantly reduced IGFBP-3 levels and vice-versa, IGFBP-3 can lower TNFα and TNFα receptor expression. Since IGFBP-3 is protective to the diabetic retina and TNFα is causative in the development of diabetic retinopathy, we wanted to better understand the cellular mechanisms by which TNFα can reduce IGFBP-3 levels. For these studies, primary human retinal endothelial cells (REC) were used since these cells undergo TNFα-mediated apoptosis under conditions of high glucose conditions and contribute to diabetic retinopathy. We first cultured REC in normal or high glucose, treated with exogenous TNFα, then measured changes in potential signaling pathways, with a focus on P38 mitogen-activated protein kinase alpha (P38α) and casein kinase 2 (CK2) as these pathways have been linked to both TNFα and IGFBP-3. We found that TNFα significantly increased phosphorylation of P38α and CK2. Furthermore, specific inhibitors of P38α or CK2 blocked TNFα inhibition of IGFBP-3 expression, demonstrating that TNFα reduces IGFBP-3 through activation of P38α and CK2. Since TNFα and IGFBP-3 are key mediators of retinal damage and protection respectively in diabetic retinopathy, increased understanding of the relationship between these two proteins will offer new therapeutic options for treatment.  相似文献   

2.
3.
Staphylococcus aureus is a leading cause of bacteraemia, which frequently results in complications such as infective endocarditis, osteomyelitis and exit from the bloodstream to cause metastatic abscesses. Interaction with endothelial cells is critical to these complications and several bacterial proteins have been shown to be involved. The S. aureus extracellular adhesion protein (Eap) has many functions, it binds several host glyco-proteins and has both pro- and anti-inflammatory activity. Unfortunately its role in vivo has not been robustly tested to date, due to difficulties in complementing its activity in mutant strains. We previously found Eap to have pro-inflammatory activity, and here show that purified native Eap triggered TNFα release in whole human blood in a dose-dependent manner. This level of TNFα increased adhesion of S. aureus to endothelial cells 4-fold via a mechanism involving protein A on the bacterial surface and gC1qR/p33 on the endothelial cell surface. The contribution this and other Eap activities play in disease severity during bacteraemia was tested by constructing an isogenic set of strains in which the eap gene was inactivated and complemented by inserting an intact copy elsewhere on the bacterial chromosome. Using a murine bacteraemia model we found that Eap expressing strains cause a more severe infection, demonstrating its role in invasive disease.  相似文献   

4.
5.
6.
7.
Tumor necrosis factor-alpha (TNF-α) derived from activated Schwann cells (SCs) plays a critical role as an inflammatory mediator in the peripheral nervous system disease. TNF-α could act as an autocrine mediator in SC activation. In this study, we found knockdown Src-suppressed protein kinase C substrate (SSeCKS) expression suppressed TNF-α production induced by TNF-α, overexpression of SSeCKS could promoted TNF-α autocrine in SCs. Such effects might be resulted in SSeCKS promoted p38 and JNK activation in SCs treated by TNF-α. Thus present data show that while SCs activation, SSeCKS may plays an important role in the release of inflammatory mediators.  相似文献   

8.
9.
10.
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.  相似文献   

11.
Preconditioning with sevoflurane (SPC) diminishes effusion of rat alveolar membrane during inflammation. It is not clear whether this preconditioning directly inhibits permeability of pulmonary microvascular endothelial cell (PMVEC) monolayer. In this article, we evaluated effects of SPC on permeability of PMVEC monolayer and identified signaling pathways involved in these effects. PMVEC monolayer was exposed to different conditions (5-hydroxydecanoate (5-HD), TNF-α, SPC, SPC with subsequent exposure to TNF-α and 5-HD, and SPC with subsequent exposure to TNF-α alone), and the permeability of PMVEC monolayer was assessed using FITC-bovine serum albumin (ELISA). Expression of ICAM-1 (Western blot and RT-PCR) and activation of p38 MAPK (Western blot) were also assessed. Compared to the TNF-α group, permeability of PMVEC monolayer in the SPC + TNF-α group was significantly lower. Activation of p38 MAPK was also diminished in the TNF-α group. Pre-treatment with 5-HD reverted beneficial effects of SPC. Expression of ICAM-1 was not modulated by any of the tested experimental exposures. The results of this study demonstrate that SPC is capable of diminishing the TNF-α-induced increase of permeability of PMVEC monolayer, and that this beneficial effect is partly reversed by 5-HD. Further, SPC suppresses activation of p38 MAPK.  相似文献   

12.
Innate lymphoid cells (ILCs) are an emerging family of innate hematopoietic cells producing inflammatory cytokines and involved in the pathogenesis of several immune-mediated diseases. The aim of this study was to characterize the tissue distribution of ILCs in celiac disease (CD), a gluten-driven enteropathy, and analyze their role in gut tissue damage. ILC subpopulations were analyzed in lamina propria mononuclear cells (LPMCs) isolated from duodenal biopsies of CD patients and healthy controls (CTR) and jejunal specimens of patients undergoing gastro-intestinal bypass by flow cytometry. Cytokines and Toll-like receptors (TLR) were assessed in ILCs either freshly isolated or following incubation of control LPMC with peptidoglycan, poly I:C, or CpG, the agonists of TLR2, TLR3, or TLR9 respectively, by flow cytometry. The role of ILCs in gut tissue damage was evaluated in a mouse model of poly I:C-driven small intestine atrophy. Although the percentage of total ILCs did not differ between CD patients and CTR, ILCs producing TNF-α and IFN-γ were more abundant in CD mucosa compared to controls. ILCs expressed TLR2, TLR3 and TLR9 but neither TLR7 nor TLR4. Stimulation of LPMC with poly I:C but not PGN or CpG increased TNF-α and IFN-γ in ILCs. RAG1-deficient mice given poly I:C exhibited increased frequency of TNF-α but not IFN-γ/IL17A-producing ILCs in the gut and depletion of ILCs prevented the poly I:C-driven intestinal damage. Our data indicate that CD-related inflammation is marked by accumulation of ILCs producing TNF-α and IFN-γ in the mucosa. Moreover, ILCs express TLR3 and are functionally able to respond to poly I:C with increased synthesis of TNF-α thus contributing to small intestinal atrophy.  相似文献   

13.
Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.  相似文献   

14.
Cilengitide is a high-affinity cyclic pentapeptdic αV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through αVβ3/αVβ5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the β1 family, and little is known on the effect of cilengitide on endothelial cells expressing αVβ3 but adhering through β1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on αVβ3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the β1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface αVβ3, stimulated phosphorylation of FAK (Y397 and Y576/577), Src (S418) and VE-cadherin (Y658 and Y731), redistributed αVβ3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density β1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of αVβ3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.  相似文献   

15.
Accumulation of advanced glycation end products (AGEs) in joints is important in the development of cartilage destruction and damage in age-related osteoarthritis (OA). The aim of this study was to investigate the roles of peroxisome proliferator-activated receptor γ (PPARγ), toll-like receptor 4 (TLR4), and receptor for AGEs (RAGE) in AGEs-induced inflammatory signalings in human OA chondrocytes. Human articular chondrocytes were isolated and cultured. The productions of metalloproteinase-13 and interleukin-6 were quantified using the specific ELISA kits. The expressions of related signaling proteins were determined by Western blotting. Our results showed that AGEs enhanced the productions of interleukin-6 and metalloproteinase-13 and the expressions of cyclooxygenase-2 and high-mobility group protein B1 and resulted in the reduction of collagen II expression in human OA chondrocytes. AGEs could also activate nuclear factor (NF)-κB activation. Stimulation of human OA chondrocytes with AGEs significantly induced the up-regulation of TLR4 and RAGE expressions and the down-regulation of PPARγ expression in a time- and concentration-dependent manner. Neutralizing antibodies of TLR4 and RAGE effectively reversed the AGEs-induced inflammatory signalings and PPARγ down-regulation. PPARγ agonist pioglitazone could also reverse the AGEs-increased inflammatory signalings. Specific inhibitors for p38 mitogen-activated protein kinases, c-Jun N-terminal kinase and NF-κB suppressed AGEs-induced PPARγ down-regulation and reduction of collagen II expression. Taken together, these findings suggest that AGEs induce PPARγ down-regulation-mediated inflammatory signalings and reduction of collagen II expression in human OA chondrocytes via TLR4 and RAGE, which may play a crucial role in the development of osteoarthritis pathogenesis induced by AGEs accumulation.  相似文献   

16.
17.
18.
Heme oxygenase (HO) represents an intrinsic antiinflammatory system based on its ability to inhibit expression of proinflammatory cytokines. The constitutive isoform heme oxygenase-2 (HO-2) has high expression and activity in cerebral microvascular endothelial cells (CMVEC). This study was undertaken to evaluate the role of HO-2 in regulation of TLR4/MyD88-dependent signaling and to study the effect of HO-2 on the expression and secretion of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and Interleukin-6 (IL6) in CMVEC. HO-2 short hairpin RNA (shRNA) and HO-2 overexpression plasmids were used to observe the effect of HO-2 on proinflammatory cytokines in CMVEC in vitro, and the results showed that the messenger RNA (mRNA) and protein levels of TNF-α and IL6 were increased and decreased, respectively, compared with control groups. LPS-stimulated TNF-α and IL6 mRNA and protein were also reduced in CMVEC treated with an inhibitor of TLR4 signaling, CLI-095, or HO-2 overexpression. CLI-095 and HO-2 overexpression both reduced TLR4 expression in CMVEC, and HO-2 shRNA blocked these effects of CLI-095. CLI-095 and HO-2 overexpression potently suppressed TLR4/MyD88-dependent proinflammatory cytokine expression in CMVEC. These results suggest that HO-2 plays an important role in protecting CMVEC against cytokine-mediated inflammation.  相似文献   

19.
20.
Chronic inflammation is now accepted to have a critical role in the onset of several diseases as well as in vascular pathology, where macrophage transformation into foam cells contributes in atherosclerotic plaque formation. Endothelial cells (EC) have a critical function in recruitment of immune cells, and proinflammatory cytokines drive the specific expression of several adhesion proteins. During inflammatory responses several cells produce hyaluronan matrices that promote monocyte/macrophage adhesion through interactions with the hyaluronan receptor CD44 present on inflammatory cell surfaces. In this study, we used human umbilical chord vein endothelial cells (HUVECs) as a model to study the mechanism that regulates hyaluronan synthesis after treatment with proinflammatory cytokines. We found that interleukin 1β and tumor necrosis factors α and β, but not transforming growth factors α and β, strongly induced HA synthesis by NF-κB pathway. This signaling pathway mediated hyaluronan synthase 2 (HAS2) mRNA expression without altering other glycosaminoglycan metabolism. Moreover, we verified that U937 monocyte adhesion on stimulated HUVECs depends strongly on hyaluronan, and transfection with short interference RNA of HAS2 abrogates hyaluronan synthesis revealing the critical role of HAS2 in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号