首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A disintegrin and metalloprotease 17 (ADAM17) is a sheddase with important substrates including tumor necrosis factor-α (TNF-α) and its receptors, the p75 neurotrophin receptor (p75NTR), and members of the epidermal growth factor family. The rationale of this study was to inhibit ADAM17-induced shedding of soluble TNF-α in order to reduce detrimental inflammation after spinal cord injury (SCI). However, using the specific ADAM17 blocker BMS-561392 in neuronal and glial cell cultures, we show that proper functioning of ADAM17 is vital for oligodendrocyte and microglia survival in a p44 MAPK-dependent manner. In contrast, genetic ablation of ADAM17 specifically increases microglial death. Surprisingly, although blocking ADAM17 in vivo does not substantially change the ratio between membrane-bound and soluble TNF-α, it increases expression of the pro-apoptotic marker Bax and microglial apoptosis while impairing functional recovery after SCI. These data suggest that ADAM17 is a key survival factor for microglial cells after SCI.  相似文献   

2.
Meprin A, composed of α and β subunits, is a membrane-bound metalloproteinase in renal proximal tubules. Meprin A plays an important role in tubular epithelial cell injury during acute kidney injury (AKI). The present study demonstrated that during ischemia-reperfusion-induced AKI, meprin A was shed from proximal tubule membranes, as evident from its redistribution toward the basolateral side, proteolytic processing in the membranes, and excretion in the urine. To identify the proteolytic enzyme responsible for shedding of meprin A, we generated stable HEK cell lines expressing meprin β alone and both meprin α and meprin β for the expression of meprin A. Phorbol 12-myristate 13-acetate and ionomycin stimulated ectodomain shedding of meprin β and meprin A. Among the inhibitors of various proteases, the broad spectrum inhibitor of the ADAM family of proteases, tumor necrosis factor-α protease inhibitor (TAPI-1), was most effective in preventing constitutive, phorbol 12-myristate 13-acetate-, and ionomycin-stimulated shedding of meprin β and meprin A in the medium of both transfectants. The use of differential inhibitors for ADAM10 and ADAM17 indicated that ADAM10 inhibition is sufficient to block shedding. In agreement with these results, small interfering RNA to ADAM10 but not to ADAM9 or ADAM17 inhibited meprin β and meprin A shedding. Furthermore, overexpression of ADAM10 resulted in enhanced shedding of meprin β from both transfectants. Our studies demonstrate that ADAM10 is the major ADAM metalloproteinase responsible for the constitutive and stimulated shedding of meprin β and meprin A. These studies further suggest that inhibiting ADAM 10 activity could be of therapeutic benefit in AKI.  相似文献   

3.
The ADAM family of disintegrin metalloproteases plays important roles in "ectodomain shedding," the process by which biologically active, soluble forms of cytokines, growth factors, and their receptors are released from membrane-bound precursors. Whereas ADAM8, ADAM15, and MDC-L (ADAM28) are expressed in specific cell types and tissues, their in vivo functions and substrates are not known. By screening a library of synthetic peptides as potential substrates, we show that soluble recombinant forms of these enzymes have similar proteolytic substrate specificity, clearly distinct from that of ADAM17 (TNFalpha-converting enzyme). A number of tumor necrosis factor (TNF) family proteins and CD23 were screened as potential substrates for ectodomain cleavage. We found that ADAM8, ADAM15, and MDC-L, but not ADAM17, catalyzed ectodomain shedding of CD23, the low affinity IgE receptor. ADAM8-dependent, soluble CD23 release required proteolytically active ADAM8, and a physical association of ADAM8 was observed with the membrane-bound form of CD23. The ADAM8-dependent release of sCD23 and the endogenous release from B cell lines could be similarly inhibited by a hydroxamic acid, metalloprotease inhibitor compound. We conclude that ADAM8 could contribute to ectodomain shedding of CD23 and may thus be a potential target for therapeutic intervention in allergy and inflammation.  相似文献   

4.
5.
The membrane-anchored metalloproteinase a disintegrin and metalloprotease 10 (ADAM10) is required for shedding of membrane proteins such as EGF, betacellulin, the amyloid precursor protein, and CD23 from cells. ADAM10 is constitutively active and can be rapidly and post-translationally enhanced by several stimuli, yet little is known about the underlying mechanism. Here, we use ADAM10-deficient cells transfected with wild type or mutant ADAM10 to address the role of its cytoplasmic and transmembrane domain in regulating ADAM10-dependent protein ectodomain shedding. We report that the cytoplasmic domain of ADAM10 negatively regulates its constitutive activity through an ER retention motif but is dispensable for its stimulated activity. However, chimeras with the extracellular domain of ADAM10 and the transmembrane domain of ADAM17 with or without the cytoplasmic domain of ADAM17 show reduced stimulated shedding of the ADAM10 substrate betacellulin, whereas the ionomycin-stimulated shedding of the ADAM17 substrates CD62-L and TGFα is not affected. Moreover, we show that influx of extracellular calcium activates ADAM10 but is not essential for its activation by APMA and BzATP. Finally, the rapid stimulation of ADAM10 is not significantly affected by incubation with proprotein convertase inhibitors for up to 8 h, arguing against a major role of increased prodomain removal in the rapid stimulation of ADAM10. Thus, the cytoplasmic domain of ADAM10 negatively influences constitutive shedding through an ER retention motif, whereas the cytoplasmic domain and prodomain processing are not required for the rapid activation of ADAM10-dependent shedding events.  相似文献   

6.
Binding of the platelet-derived growth factor (PDGF)-B to its receptor PDGFRβ promotes proliferation, migration, and recruitment of pericytes and smooth muscle cells to endothelial cells, serving to stabilize developing blood vessels. The main goals of this study were to determine whether the extracellular domain of the PDGFRβ can be proteolytically released from cell membranes and, if so, to identify the responsible sheddase and determine whether activation of the PDGFRβ stimulates its shedding and potentially that of other membrane proteins. We found that the PDGFRβ is shed from cells by a metalloproteinase and used loss-of-function experiments to identify ADAM10 as the sheddase responsible for constitutive and ionomycin-stimulated processing of the PDGFRβ. Moreover, we showed that ligand-dependent activation of the PDGFRβ does not trigger its own shedding by ADAM10, but instead it stimulates ADAM17 and shedding of substrates of ADAM17, including tumor necrosis factor α and transforming growth factor α. Finally, we demonstrated that treatment of mouse embryonic fibroblasts with PDGF-B triggers a metalloproteinase-dependent cross-talk between the PDGFRβ and the epidermal growth factor receptor (EGFR)/ERK1/2 signaling axis that is also critical for PDGF-B-stimulated cell migration, most likely via ADAM17-dependent release and activation of ligands of the EGFR. This study identifies the principal sheddase for the PDGFRβ and provides new insights into the mechanism of PDGFRβ-dependent signal transduction and cross-talk with the EGFR.  相似文献   

7.
Neurotoxic amyloid β-peptides are thought to be a causative agent of Alzheimer’s disease in humans. The production of amyloid β-peptides from amyloid precursor protein (APP) could be diminished by enhancing α-processing; however, the physical interactions between APP and α-secretases are not well understood. In this study, we employed super-resolution light microscopy to examine in cell-free plasma membranes the abundance and association of APP and α-secretases ADAM10 (a disintegrin and metalloproteinase) and ADAM17. We found that both secretase molecules localize similarly closely to APP (within ≤50 nm). However, when cross-linking APP with antibodies directed against the GFP tag of APP, in confocal microscopy, we observed that only ADAM10 coaggregated with APP. Furthermore, we mapped the involved protein domain by using APP variants with an exchanged transmembrane segment or lacking cytoplasmic/extracellular domains. We identified that the transmembrane domain of APP is required for association with α-secretases and, as analyzed by Western blot, for α-processing. We propose that the transmembrane domain of APP interacts either directly or indirectly with ADAM10, but not with ADAM17, explaining the dominant role of ADAM10 in α-processing of APP. Further understanding of this interaction may facilitate the development of a therapeutic strategy based on promoting APP cleavage by α-secretases.  相似文献   

8.
T cell immunoglobulin and mucin domain 3 (Tim-3) dampens the response of CD4+ and CD8+ effector T cells via induction of cell death and/or T cell exhaustion and enhances the ability of macrophages to clear pathogens via binding to galectin 9. Here we provide evidence that human Tim-3 is a target of A disintegrin and metalloprotease (ADAM)-mediated ectodomain shedding resulting in a soluble form of Tim-3. We identified ADAM10 and ADAM17 as major sheddases of Tim-3 as shown by ADAM-specific inhibitors and the ADAM10 pro-domain in HEK293 cells and ADAM10/ADAM17-deficient murine embryonic fibroblasts. PMA-induced shedding of Tim-3 was abrogated by deletion of amino acids Glu181–Asp190 of the stalk region and Tim-3 lacking the intracellular domain was not efficiently cleaved after PMA stimulation. Surprisingly, a single lysine residue within the intracellular domain rescues shedding of Tim-3. Shedding of endogenous Tim-3 was found in primary human CD14+ monocytes after PMA and ionomycin stimulation. Importantly, the recently described down-regulation of Tim-3 from Toll-like receptor-activated CD14+ monocytes was caused by ADAM10- and ADAM17-mediated shedding. Inhibition of Tim-3 shedding from lipopolysaccharide-induced monocytes did not influence lipopolysaccharide-induced TNFα and IL-6 but increases IL-12 expression. In summary, we describe Tim-3 as novel target for ADAM-mediated ectodomain shedding and suggest a role of Tim-3 shedding in TLR-mediated immune responses of CD14+ monocytes.  相似文献   

9.
ADAM17 (A disintegrin and metalloproteinase 17) is a membrane-bound protease that cleaves various cell surface proteins, including cytokines and cytokine receptors. Recently it was shown that ADAM17 is highly expressed on the surface of many cancer cells, whereas normal cells express low levels of ADAM17, implying that ADAM17 is a potential immunotherapeutic target. We have generated a monoclonal antibody against human ADAM17, which recognized the membrane proximal cysteine-rich extension of the ADAM17 protein. Unlike normal cells, tumour cell lines, such as a prostate cancer cell line, pancreatic cancer cell lines, a breast cancer cell line and a non-small lung cancer cell line, expressed ADAM17 on the cell surface. Using the sequence of the antibody we generated an ADAM17-specific scFv (single-chain variable fragment) and fused this to a CD3-specific scFv to generate a bispecific T-cell engager antibody [A300E-BiTE (bispecific T-cell engager antibody)]. Specificity was demonstrated on cells in which ADAM17 was knocked down with a specific shRNA (short hairpin RNA). A300E-BiTE recognized ADAM17 and CD3 on the cell surface of tumour cells and T-cells respectively. In the presence of primary human peripheral blood mononuclear cells or human T-cells the addition of A300E-BiTE led to ADAM17-specific killing of prostate tumour cells indicating a novel strategy for the treatment of cancer.  相似文献   

10.
11.
Interleukin (IL)-1 plays a key role in carcinogenesis, tumor progression, and metastasis. Although IL-1 may enhance the expansion of CD8+ T-cells, the pathological contribution of IL-1-activated CD8+ T-cells to tumor metastasis remains unclear. This study used a liver metastasis model of the EL4 T-cell lymphoma cells transplanted into human IL (hIL)-1α conditional transgenic (hIL-1α cTg) mice. Overproduction of hIL-1α suppressed both macroscopic and histological liver metastasis of EL4 T-cell lymphoma. The hIL-1α-induced inflammatory state increased the number of CD8+ T-cells both within and around metastatic tumors. Moreover, larger numbers of CD8+ T-cells showed greater infiltration of liver blood vessels in hIL-1α cTg mice than in control wild-type mice. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining of liver tissue from hIL-1α cTg mice indicated increased apoptosis of cells in the tumor. Localization of apoptosis cells resembled that of CD8+ T-cells. In addition, cytotoxicity assay showed that CD8+ T-cell counts from tumor-bearing hIL-1α cTg mice correlated with cytotoxicity against EL4. In summary, IL-1α suppresses lymphoma metastasis, and IL-1α-activated CD8+ T-cells may play important roles in inhibiting both tumor metastasis and metastatic tumor growth:  相似文献   

12.
The low affinity IgE receptor, FcepsilonRII (CD23), is both a positive and negative regulator of IgE synthesis. The proteinase activity that converts the membrane-bound form of CD23 into a soluble species (sCD23) is an important regulator of the function of CD23 and may be an important therapeutic target for the control of allergy and inflammation. We have characterized the catalytic activity of ADAM (a disintegrin and metalloproteinase) 10 toward human CD23. We found that ADAM10 efficiently catalyzes the cleavage of peptides derived from two distinct cleavage sites in the CD23 backbone. Tissue inhibitors of metalloproteinases and a specific prodomain-based inhibitor of ADAM10 perturb the release of endogenously produced CD23 from human leukemia cell lines as well as primary cultures of human B-cells. Expression of a mutant metalloproteinase-deficient construct of ADAM10 partially inhibited the production of sCD23. Similarly, small inhibitory RNA knockdown of ADAM10 partially inhibited CD23 release and resulted in the accumulation of the membrane-bound form of CD23 on the cells. ADAM10 contributes to CD23 shedding and thus could be considered a potential therapeutic target for the treatment of allergic disease.  相似文献   

13.
Our previous studies showed that the green tea-derived polyphenolic compound (−)-epigallocatechin-3 gallate (EGCG) reduces amyloid-β (Aβ) production in both neuronal and mouse Alzheimer’s disease (AD) models in concert with activation of estrogen receptor-α/phosphatidylinositide 3-kinase/protein kinase B (ERα/PI3K/Akt) signaling and anti-amyloidogenic amyloid precursor protein (APP) α-secretase (a disintegrin and metallopeptidase domain-10, ADAM10) processing. Since the gallate moiety in EGCG may correspond to the 7α position of estrogen, thereby facilitating ER binding, we extensively screened the effect of other gallate containing phenolic compounds on APP anti-amyloidogenic processing. Octyl gallate (OG; 10 µM), drastically decreased Aβ generation, in concert with increased APP α-proteolysis, in murine neuron-like cells transfected with human wild-type APP or “Swedish” mutant APP. OG markedly increased production of the neuroprotective amino-terminal APP cleavage product, soluble APP-α (sAPPα). In accord with our previous study, these cleavage events were associated with increased ADAM10 maturation and reduced by blockade of ERα/PI3k/Akt signaling. To validate these findings in vivo, we treated Aβ-overproducing Tg2576 mice with OG daily for one week by intracerebroventricular injection and found decreased Aβ levels associated with increased sAPPα. These data indicate that OG increases anti-amyloidogenic APP α-secretase processing by activation of ERα/PI3k/Akt signaling and ADAM10, suggesting that this compound may be an effective treatment for AD.  相似文献   

14.
Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha. Here, we report that mice lacking ADAM17 in chondrocytes (A17ΔCh) have a significantly expanded zone of hypertrophic chondrocytes in the growth plate and retarded growth of long bones. This abnormality is caused by an accumulation of the most terminally differentiated type of chondrocytes that produces a calcified matrix. Inactivation of ADAM17 in osteoclasts or endothelial cells does not affect the zone of hypertrophic chondrocytes, suggesting that the main role of ADAM17 in the growth plate is in chondrocytes. This notion is further supported by in vitro experiments showing enhanced hypertrophic differentiation of primary chondrocytes lacking Adam17. The enlarged zone of hypertrophic chondrocytes in A17ΔCh mice resembles that described in mice with mutant EGFR signaling or lack of its ligand transforming growth factor α (TGFα), suggesting that ADAM17 regulates terminal differentiation of chondrocytes during endochondral ossification by activating the TGFα/EGFR signaling axis.  相似文献   

15.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.  相似文献   

16.
Syndecans are cell surface proteoglycans that bind and modulate various proinflammatory mediators and can be proteolytically shed from the cell surface. Within the lung, syndecan-1 and -4 are expressed as transmembrane proteins on epithelial cells and released in the bronchoalveolar fluid during inflammation. We here characterize the mechanism leading to the generation of soluble syndecan-1 and -4 in cultured epithelial cells and murine lung tissue. We show that the bladder carcinoma epithelial cell line ECV304, the lung epithelial cell line A459 and primary alveolar epithelial cells express and constitutively release syndecan-1 and -4. This release involves the activity of the disintegrin-like metalloproteinase ADAM17 as demonstrated by use of specific inhibitors and lentivirally transduced shRNA. Stimulation of epithelial cells with PMA, thrombin, or proinflammatory cytokines (TNFα/IFNγ) led to the down-regulation of surface-expressed syndecan-1 and -4, which was associated with a significant increase of soluble syndecans and cell-associated cleavage fragments. The enhanced syndecan release was not related to gene induction of syndecans or ADAM17, but rather due to increased ADAM17 activity. Soluble syndecan-1 and -4 were also released into the bronchoalveolar fluid of mice. Treatment with TNFα/IFNγ increased ADAM17 activity and syndecan release in murine lungs. Both constitutive and induced syndecan shedding was prevented by the ADAM17 inhibitor. ADAM17 may therefore be an important regulator of syndecan functions on inflamed lung epithelium.  相似文献   

17.
Elevated levels of the cytokine TL1A is associated with several autoimmune diseases e.g. rheumatoid arthritis and inflammatory bowel disease. However, the exact role of TL1A remains elusive. In this study, we investigated the function of TL1A in a pro-inflammatory setting. We show that TL1A together with IL-12, IL-15 and IL-18 increases expression of the co-stimulatory molecules CD154 (CD40 ligand) and CD134 (OX40) on previously activated CD4+ T cells. This indicates that TL1A functions as a co-stimulatory molecule, decreasing the activation threshold of T-cells. We have previously shown that TL1A co-stimulation strongly induces IL-6 in human healthy leukocytes. Interestingly, the cytokine-activated effector T-cells did not produce IL-6 in response to TL1A, indicating distinct effects of TL1A on different cell populations. We further show that this co-stimulation increases the expression of CD25 (IL-2Rα) and CD11a (α-chain of LFA-1) on CD4 T-cells, likely governing increased IL-2/IL-15 sensitivity and cell-cell contact. Along with this, TL1A co-stimulation caused a specific induction of IL-22 and GM-CSF from the activated T-cells. These results substantially contribute to the explanation of TL1A''s role in inflammation. Our results suggest that TL1A should be considered as a target for immunotherapeutic treatment of rheumatoid arthritis and inflammatory bowel disease.  相似文献   

18.
The haptoglobin-hemoglobin receptor CD163 and proTNF-α are transmembrane macrophage proteins subjected to cleavage by the inflammation-responsive protease ADAM17. This leads to release of soluble CD163 (sCD163) and bioactive TNF-α. Sequence comparison of the juxtamembrane region identified similar palindromic sequences in human CD163 (1044Arg-Ser-Ser-Arg) and proTNF-α (78Arg-Ser-Ser-Ser-Arg). In proTNF-α the Arg-Ser-Ser-Ser-Arg sequence is situated next to the previously established ADAM17 cleavage site. Site-directed mutagenesis revealed that the sequences harbor essential information for efficient cleavage of the two proteins upon ADAM17 stimulation. This was further evidenced by analysis of mouse CD163 that, like CD163 in other non-primates, does not contain the palindromic CD163 sequence in the juxtamembrane region. Mouse CD163 resisted endotoxin- and phorbol ester-induced shedding, and ex vivo analysis of knock-in of the Arg-Ser-Ser-Arg sequence in mouse CD163 revealed a receptor shedding comparable with that of human CD163. In conclusion, we have identified an essential substrate motif for ADAM17-mediated CD163 and proTNF-α cleavage in macrophages. In addition, the present data indicate that CD163, by incorporation of this motif in late evolution, underwent a modification that allows for an instant down-regulation of surface CD163 expression and inhibition of hemoglobin uptake. This regulatory modality seems to have coincided with the evolution of an enhanced hemoglobin-protecting role of the haptoglobin-CD163 system in primates.  相似文献   

19.
CD40-induced signalling through ligation with its natural ligand (CD40L/CD154) is dependent on recruitment of TRAF molecules to the cytoplasmic domain of the receptor. Here, we applied the yeast two-hybrid system to examine whether other proteins can interact with CD40. Fas-Associated Factor 1(FAF1) was isolated from a HeLa cDNA library using the CD40 cytoplasmic tail (216–278 aa) as a bait construct. FAF1 was able to interact with CD40 both in vitro and in vivo. The FAF1 N-terminal domain was sufficient to bind CD40 and required the TRAF6-binding domain within the cytoplasmic tail of CD40 for binding. CD40 ligation induced FAF1 expression in an NFκB-dependent manner. Knockdown of FAF1 prolonged CD40-induced NFκB, whereas overexpression of FAF1 suppressed CD40-induced NFκB activity and this required interaction of FAF1 with the CD40 receptor via its FID domain. Thus, we report a novel role for FAF1in regulating CD40-induced NFκB activation via a negative feedback loop. Loss of FAF1 function in certain human malignancies may contribute to oncogenesis through unchecked NFκB activation, and further understanding of this process may provide a biomarker of NFκB-targeted therapies for such malignancies.  相似文献   

20.
In this review, we focus specifically on the role that the metalloproteinase, A Disintegrin and Metalloproteinase 17 [ADAM17] plays in the development and progression of the metabolic syndrome. There is a well-recognised link between the ADAM17 substrate tumour necrosis factor α (TNF-α) and obesity, inflammation and diabetes. In addition, knocking out ADAM17 in mice leads to an extremely lean phenotype. Importantly, ADAM17-deficient mice exhibit one of the most pronounced examples of hypermetabolism in rodents to date. It is vital to further understand the mechanistic role that ADAM17 plays in the metabolic syndrome. Such studies will demonstrate that ADAM17 is a valuable therapeutic target to treat obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号