首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three dimensional multicellular aggregate, also referred to as cell spheroid or microtissue, is an indispensable tool for in vitro evaluating antitumor activity and drug efficacy. Compared with classical cellular monolayer, multicellular tumor spheroid (MCTS) offers a more rational platform to predict in vivo drug efficacy and toxicity. Nevertheless, traditional processing methods such as plastic dish culture with nonadhesive surfaces are regularly time-consuming, laborious and difficult to provide uniform-sized spheroids, thus causing poor reproducibility of experimental data and impeding high-throughput drug screening. In order to provide a robust and effective platform for in vitro drug evaluation, we present an agarose scaffold prepared with the template containing uniform-sized micro-wells in commercially available cell culture plates. The agarose scaffold allows for good adjustment of MCTS size and large-scale production of MCTS. Transparent agarose scaffold also allows for monitoring of spheroid formation under an optical microscopy. The formation of MCTS from MCF-7 cells was prepared using different-size-well templates and systematically investigated in terms of spheroid growth curve, circularity, and cell viability. The doxorubicin cytotoxicity against MCF-7 spheroid and MCF-7 monolayer cells was compared. The drug penetration behavior, cell cycle distribution, cell apoptosis, and gene expression were also evaluated in MCF-7 spheroid. The findings of this study indicate that, compared with cellular monolayer, MCTS provides a valuable platform for the assessment of therapeutic candidates in an in vivo-mimic microenvironment, and thus has great potential for use in drug discovery and tumor biology research.  相似文献   

2.
Availability of an efficient transfection protocol is the first determinant in success of gene transferring studies in mammalian cells which is accomplished experimentally for every single cell type. Herein, we provide data of a comparative study on optimization of transfection condition by electroporation and chemical methods for Huh-7 and Vero cells. Different cell confluencies, DNA/reagent ratios and total transfection volumes were optimized for two chemical reagents including jetPEI? and Lipofectamine? 2000. Besides, the effects of electric field strength and pulse length were investigated to improve electroporation efficiency. Transfection of cells by pEGFP-N1 vector and tracking the expression of GFP by FACS and Fluorescence Microscopy analysis were the employed methods to evaluate transfection efficiencies. Optimized electroporation protocols yielded 63.73 ± 2.36 and 73.9 ± 1.6% of transfection in Huh-7 and Vero cells respectively, while maximum achieved level of transfection by jetPEI? was 14.2 ± 0.69 and 28 ± 1.11% Huh-7 and Vero cells, respectively. Post transfectional chilling of the cells did not improve electrotransfection efficiency of Huh-7 cells. Compared to chemical based reagents, electroporation showed superior levels of transfection in both cell lines. The presented protocols should satisfy most of the experimental applications requiring high transfection efficiencies of these two cell lines.  相似文献   

3.
Introduction of genetic material into cells is an essential prerequisite for current research in molecular cell biology. Although transfection with commercially available reagents results in excellent gene expression, their high costs are obstacles to experimentation with a large number or large scales of transfection. The cationic polymer linear-polyethylenimine (MW 25,000) (PEI), one of the most cost-effective vehicles, facilitates DNA compaction by polyplex formation, which leads to efficient delivery of DNA into cells by endocytosis. However, the use of PEI is still limited because of substantial cytotoxicity and intolerable deterioration in transfection efficiency by its low stability. Here, we show that acidification of PEI is important for its transfection activity. Dissolving PEI powder in 0.2N HCl confers a long shelf-life for PEI storage at 4 and −80 °C, and the polyplex formation of plasmid DNA with PEI is optimized in lactate-buffered saline at pH 4.0. Furthermore, changing the culture medium at 8–12 h posttransfection can minimize the cytotoxicity of PEI without sacrificing the high transfection efficiency comparable to that of commercial reagents. The cost per test using acidified PEI is drastically reduced to approximately 1:10,000, compared with commercial reagents. Thus, we conclude that acidification of PEI satisfactorily accomplishes cost-effective, high-efficiency transfection.  相似文献   

4.
5.
目的:在细胞学层面上研究Smo基因在人肝癌Huh-7细胞中的表达及小RNA干扰Smo基因表达对肝癌Huh-7细胞增殖及凋亡的影响。方法:Huh-7细胞培养,总RNA抽提,紫外分光光度计纯度测定,Western印记法检测Smo蛋白表达,转染后流式细胞检测Huh-7凋亡率。结果:在mRNA和蛋白水平Smo均强表达。siRNA-1干扰序列干扰结果最强,转染后可诱导Huh-7细胞凋亡。结论:siRNA-l能对肝癌Huh7细胞Smo基因表达产生干涉作用,siRNA-1序列能有效地降解肝癌Huh7细胞内的SmomRNA,使Smo mRNA及Smo蛋白表达下调,从而达到沉默肝癌Huh7细胞中Smo mRNA表达的效果。  相似文献   

6.
Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [14C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.  相似文献   

7.
旨在用Xfect试剂介导重组质粒pEGFP-C2/LAT-ORF3转染Vero细胞,以期获得转染效率较高的方法,并检测目标片段的表达,从而为进一步研究HSV-2 LAT基因及其ORF3片段的生物学功能奠定基础。用Xfect试剂介导重组质粒pEGFP-C2/LAT-ORF3转染Vero细胞,48 h后观察荧光表达情况,并计算不同转染方法分别在有无血清及质粒与Xfect Polymer比例不同时的转染效率。用RT-PCR检测ORF3片段在Vero细胞中的表达。结果显示,采用贴壁转染法,在有血清及质粒与Xfect Polymer比例为5μg/2μL时转染效率较高;RT-PCR可以获得目的条带,证明ORF3片段在Vero细胞中得到表达。本试验获得的优化条件可以显著提高Xfect Polymer对Vero细胞的转染效率;以绿色荧光蛋白作为标签鉴定目的基因在细胞中表达的方法切实可行。  相似文献   

8.
Primary cells, such as HUVEC, are notoriously difficult to transfect and are susceptible to the toxic effects of transfection reagents. A transfection reagent with a high transfection efficiency and low cytotoxicity was sought to retain sufficient viability of transfected HUVEC for subsequent assays. Nine chemical transfection reagents, currently commercially available, were compared for their ability to transfect HUVEC in vitro. A plasmid expressing the enhanced GFP (EGFP) was used for transfection, followed by flow cytometry of transfected HUVEC to determine the proportion of EGFP-expressing cells as a measure of transfection efficiency. Lipofectamine 2000 and Lipofectamine LTX (Invitrogen, Carlsbad, CA, USA) gave the highest transfection efficiencies of the reagents tested. Lipofectamine LTX was identified as the optimal transfection reagent as a result of its higher transfection efficiency at shorter periods of time following transfection when cytotoxicity was limited, allowing sufficient yield of transfected HUVEC for use in subsequent assays.  相似文献   

9.
BACKGROUND: Our current understanding of how the unique tumour microenvironment influences the efficacy of gene delivery is limited. The current investigation systematically examines the efficiency of several non-viral gene transfer agents to transfect multicellular tumour spheroids (MCTS), an in vitro model that displays a faithful three-dimensional (3D) representation of solid tumour tissue. METHODS: Using a luciferase reporter assay, gene transfer to MCTS was optimised for 22 kDa linear and 25 kDa branched polyethyleneimine (PEI), the cationic lipids Lipofectamine(trade mark) and DCChol : DOPE, and the physical approach of tissue electroporation. Confocal microscopy was used to take optical tissue slices to identify the tissue localisation of green fluorescent protein (GFP) reporter gene expression and the distribution of fluorescently labelled complexes. A MCTS model of quiescent tumour regions was used to establish the influence of cellular proliferation status on gene transfer efficiency. RESULTS: Of the polyplexes tested, 22 kDa linear PEI provided optimal gene delivery, with gene expression peaking at 46 h. Despite being the optimal vector tested, PEI-mediated transfection was limited to cells at the MCTS periphery. Using fluorescent PEI, it was found that complexes could only penetrate the outer 3-5 proliferating cell layers of the MCTS, sparing the deeper quiescent cells. Gene delivery in an MCTS model comprised entirely of quiescent cells demonstrated that in addition to being inaccessible to the vector, quiescent tumour regions are inherently less susceptible to PEI-mediated transfection than proliferating regions. This 'resistance' to transfection observed in quiescent cells was overcome through the use of electroporation. Despite the improved efficacy of electroporation in quiescent tissue, the gene expression was still confined to the outer regions of MCTS. The results suggest that limited access to central regions of an MCTS remain a significant barrier to gene delivery. CONCLUSIONS: This data provides new insights into tumour-specific factors affecting non-viral gene transfer and highlights the difficulties in delivering genes to avascular tumour regions. The MCTS model is a useful system for the initial screening of future gene therapy strategies for solid tumours.  相似文献   

10.
A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer:DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (p<0.001 for both). Ten formulations exceeded 30% transfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×10(3)-fold and 1.5±0.7×10(3)-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p?=?0.003 for RPE/choroid, p<0.001 for neural retina). The successful transfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases.  相似文献   

11.

Background

Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms.

Methodology/Principal Findings

We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1), a component of synaptic vesicles; to Rim (UNC-10), a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1), a component of centrosomes; to CENP-C (HCP-4), which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2), a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5); to the nuclear envelope protein lamin (LMN-1); to EHD1 (RME-1) a marker for recycling endosomes; to caveolin (CAV-1), a marker for caveolae; to the cytochrome P450 (CYP-33E1), a resident of the endoplasmic reticulum; to β-1,3-glucuronyltransferase (SQV-8) that labels the Golgi; to a chaperonin (HSP-60) targeted to mitochondria; to LAMP (LMP-1), a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7) of the 26S proteasome; to dynamin (DYN-1) and to the α-subunit of the adaptor complex 2 (APA-2) as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1) and cadherin (HMR-1), both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1), which localized to apical membranes; to an ERBIN family protein (LET-413) which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7) which localizes to the plasma membrane at cell-cell contacts. In addition to working in whole mount immunocytochemistry, most of these antibodies work on western blots and thus should be of use for biochemical fractionation studies.

Conclusions/Significance

We have produced a set of monoclonal antibodies to subcellular components of the nematode C. elegans for the research community. These reagents are being made available through the Developmental Studies Hybridoma Bank (DSHB).  相似文献   

12.
The use of in vitro cell culture systems to assess gene function largely depends on the successful transfer of DNA into target cells. Well developed in mammals, transfection methods are still to be optimized for non-mammalian cell culture systems, like fish. Here we describe a rapid, cost-efficient, and successful method to transfer DNA into a fish bone-derived cell line using polyethylenimine (PEI) as the DNA carrier. Using this method, DNA transfer was remarkably enhanced in comparison with commercially available reagents, as demonstrated by the increased activity of both luciferase and green fluorescent protein observed in the transfected cells. Its efficiency in transferring DNA intoa wide range of cell types, including non-mammalian and hard-to-transfect cells, in addition to a low cost, show that PEI is a reagent of choice for nonviral vector transfection.  相似文献   

13.
Butash KA  Natarajan P  Young A  Fox DK 《BioTechniques》2000,29(3):610-4, 616, 618-9
Plasmid DNA purified from bacterial cells can be contaminated with endotoxin to different extents, depending on the purification method. Earlier reports indicate that endotoxin can decrease transfection efficiency in many eukaryotic cell lines; however, the amount of endotoxin required for inhibition is unclear. We determined endotoxin effects in several cell lines and observed that endotoxin levels greater than or equal to 10,000 endotoxin units (EU) were needed to significantly affect cell proliferation and viability; levels greater than 2000 EU/mu g DNA were required to significantly inhibit transfection for all but one (Huh-7) of the cell lines tested. These endotoxin levels are significantly higher than endotoxin contamination in plasmid DNA purified by anion exchange, CsCl2 gradient and endotoxin-free purification technology, but not as high as a crude alkaline lysis preparatory method. Plasmid DNA prepared using anion exchange technology was comparable to endotoxin-free technology in terms of transfection efficiency. Even Huh-7 cells, which are markedly more sensitive to endotoxins, have comparable transfection efficiencies using plasmid DNA purified by either of these two methods. We conclude that for those cell lines commonly used for transfection studies, endotoxin-free, quality DNA is not necessary because significantly higher levels of bacterial endotoxins are required to inhibit either cell proliferation or transfection.  相似文献   

14.
A subclone of Huh-7 cells that could be relatively efficiently transfected and infected with hepatitis E virus was identified. Following transfection, infectious virus was produced but remained predominantly cell associated. Intracellular virus, recovered by lysis of transfected cells, infected na?ve cells. This in vitro-produced virus appeared to be antigenically identical to virus isolated from clinical samples. Lysates from cells transfected with mutant viral genomes unable to synthesize ORF3 protein contained infectious virions that were similar in number, thermostability, and sedimentation characteristics to those in lysates transfected with wild-type viral genomes. Therefore, in contrast to its requirement in vivo, ORF3 protein is not required for infection of Huh-7 cells or production of infectious virus in vitro.  相似文献   

15.
Reported herein is the use of chiral cationic polyamines for two intriguing applications: fabrication of chiral covalently-linked microcapsules, and enantiospecific delivery of siRNA to Huh 7 cells. The microcapsules are easily fabricated from homochiral polymers, and the resulting architectures can be used for supramolecular chiral catalysis and many other potential applications. Enantiospecific delivery of siRNA to Huh 7 cells is seen by one ‘enantiomer’ of the polymers delivering siRNA with significantly improved transfection efficiency and reduced toxicity compared to the ‘enantiomeric’ polymer and commercially available transfection reagents. Taken together, the use of these easily accessible polyamine structures for diverse applications is highlighted in this Letter herein and can lead to numerous future research efforts.  相似文献   

16.
Eukaryotic cells were individually transfected using commercially available atomic force microscope tips decorated with plasmidic DNA encoding for the fluorescent protein EGFP. In a typical transfection attempt, the tip is forcibly incorporated into the cell thus allowing for the transfer of the genetic material through the cell membrane. A sharp discontinuity, corresponding to the passage of the tip through the cell membrane can be easily detected when monitoring the cellular deformation as a function of the applied force. In order for the transfection to be successful, the tip must reversibly penetrates the membrane without causing disturbance or damage to the cell. Transfection success rate (30%), cell survival, and growth are confirmed by epifluorescence microscopy. This technique provides an alternative tool to the transfection toolbox, allowing the transfection of specific individual cells with minimal disturbance.  相似文献   

17.
18.
19.
A non-viral transfection method for oral mucosal cells was investigated using a modified transfection method and five commercial transfection reagents. The CellFECTINTM gave the highest expression of a transfected gene. When the mucosal cells were transfected with 0.3 ng DNA/cell, the transfection efficiency was optimal, and the production of a reporter protein increased up to ten times higher than those with the other transfection reagents.  相似文献   

20.
Hepatitis C virus (HCV) cell culture system with JFH-1 strain and HuH-7 cells enabled us to produce infectious HCV particles in vitro, and such system is useful to explore the anti-HCV compounds and to develop the vaccine against HCV. In the present study, we describe the derivation of a cell line that permits improved production of HCV particles. Specifically, we characterized several subclones that were isolated from the original HuH-7 cell line by limiting dilution. These HuH-7 subclones displayed a notable range of HCV production levels following transfection by full-genome JFH-1 RNA. Among these subclones, HuH-7T1 produced HCV more efficiently than other subclones and Huh-7.5.1 that is known to be highly permissive for HCV replication. Upon transfection with full-genome RNA, HCV production was increased ten-fold in HuH-7T1 compared to Huh-7.5.1. This increase in viral production correlated with increased efficiency of intracellular infectious virus production. Furthermore, HCV replication did not induce cell cycle arrest in HuH-7T1, whereas it did in Huh-7.5.1. Consequently, the use of HuH-7T1 as host cells could provide increased population of HCV-positive cells and elevated viral titer. In conclusion, we isolated a HuH-7 subclone, HuH-7T1, that supports efficient HCV production. High efficiency of intracellular infectious virus production and evasion of cell cycle arrest were important for this phenotype. We expect that the use of this cell line will facilitate analysis of the underlying mechanisms for HCV particle assembly and the cell cycle arrest caused by HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号