首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   

2.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
1. Zooplankton may react differently to chemical signals produced by macrophytes in shallow systems. They may be attracted by macrophytes, as the plants may be used as a refuge against predators, or the plants may have a repellent effect (e.g. when the plants are a habitat for numerous invertebrate predators or fish). In fishless Patagonian ponds, the structural complexity provided by macrophytes modulates the rate of predation on zooplankton by the invertebrate predator Mesostoma ehrenbergii (Turbellaria). 2. We performed a field study to analyse the coexistence of M. ehrenbergii and three of its prey (two copepods, the calanoid Boeckella gracilis and the cyclopoid Acanthocyclops robustus, and the cladoceran Ceriodaphnia dubia) in four ponds. In two of the ponds, we carried out day and night sampling to evaluate the influence of macrophytes on the distribution of these zooplankters. 3. In laboratory experiments, we analysed the response of the zooplankters to the chemical signals produced by macrophytes (the emergent Juncus pallescens and the submerged Myriophyllum quitense), the predator M. ehrenbergii and the ‘alarm signal’ provided by a homogenate of conspecifics. 4. Our field studies demonstrated the coexistence of M. ehrenbergii and the selected prey in different seasons and that A. robustus and C. dubia choose the vegetated area (a mixed bed of J. pallescens and M. quitense) over the non‐vegetated area. The habitat choice experiments indicated that the presence of M. ehrenbergii may directly affect the habitat selection of B. gracilis, because this zooplankter swam away from the predator. In addition, Mesostoma may indirectly affect the habitat selection of the cyclopoid copepod A. robustus and the cladoceran C. dubia as both zooplankters exhibited a negative response to the alarm signal produced by crushed conspecifics. 5. The presence of the submerged M. quitense did not affect the horizontal movements of any of the zooplankters studied. In contrast, the emergent macrophyte J. pallescens elicited a positive response of B. gracilis, suggesting that this aquatic plant may act as a predation refuge. 6. Our results suggest that predator avoidance behaviour can occur in fishless environments in response to a tactile invertebrate predator like Mesostoma. In addition, the refuge effect of emergent macrophytes, enhancing the survival of pelagic zooplankters, may act as a key factor in stabilizing predator–prey interactions in fishless Patagonian ponds, as has been widely recorded in northern temperate lakes with fish.  相似文献   

4.
1. Zooplankton use macrophytes as day-time refuge areas when trying to escape from pelagic predators. But macrophytes can also host a diverse and abundant macroinvertebrate assemblage and zooplankton are also likely to face predacious macroinvertebrates once they enter the littoral zone. This study aimed to elucidate the role of macroinvertebrates in determining the refuge capacity of macrophytes.
2. We conducted a field enclosure experiment using plastic bags and complementary laboratory feeding trials to test how macroinvertebrates counteract the benefits to zooplankton of the macrophyte refuge. The field experiment consisted of three treatments with different macroinvertebrate assemblages: without predators (WP), low abundance and diversity (LAD) and high abundance and diversity of predators (HAD – which represents lake conditions).
3. Populations of Diaphanosoma brachyurum , Bosmina huaronensis and Moina micrura (Cladocera) and of both male and female Notodiaptomus incompositus (Copepoda, Calanoida) declined (by nearly 80%) in the presence of HAD in comparison to WP and LAD treatments.
4. Feeding trials revealed that Buenoa sp. (backswimmer), adults of Palaemonetes argentinus (grass shrimp) and Cyanallagma interruptum (damselfly) had a significant negative impact on cladocerans ( D. brachyurum, B. huaronensis ) and the calanoid copepod population (males, females and copepodites). These predators showed a strong predation effect ranging from 75% to 100% reductions of zooplankton populations.
5. The refuge effect offered by macrophytes to zooplankton depends on and is balanced by the predacious macroinvertebrate assemblage that plants host. The risk of confronting littoral predators is high and macroinvertebrate presence can turn the macrophytes into risky areas for zooplankton.  相似文献   

5.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

6.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

7.
Submerged macrophytes may play an important role as a refuge for zooplankton against predators. However, a recent study suggests that their importance depends on the trophic state of the lake. We studied the impact of fish and macrophytes on the horizontal distribution of pelagic cladocerans in 56 oligotrophic arctic Greenland lakes. In north-east and western Greenland, zooplankton was sampled in the near-shore (littoral) and central (pelagial) part of all lakes and fish were sampled with multiple mesh-sized gill nets. Macrophytes were visually estimated in the littoral. In north-east Greenland, 5 taxa of cladocerans were found, while 14 taxa were recorded in western Greenland. Daphnia pulex occurred only in fishless lakes in both northeast and western Greenland and avoided the near-shore areas in the shallow and deep lakes. Bosmina spp. and Holopedium gibberum were evenly distributed between the littoral and the pelagial in the deep and shallow fishless lakes. However, their near-shore density was lowest in the presence of fish. Macrophyte-related and benthic cladocerans concentrated either in the littoral or were evenly distributed between the littoral and the pelagial, irrespective of depth and fish presence or absence. Macrophytes had no impact on the horizontal distribution of pelagic cladocerans. Thus, it is concluded that horizontal heterogeneity of Bosmina spp. and Holopedium gibberum might be affected by the presence of fish.  相似文献   

8.
Biomanipulation was carried out in order to improve the water quality of the small hypertrophic Lake Zwemlust (1.5 ha; mean depth 1.5 m). In March 1987 the lake was drained to facilitate the elimination of fish. Fish populations were dominated by planktivorous and benthivorous species (total stock c. 1500 kg) and were collected by seine- and electro-fishing. The lake was subsequently re-stocked with 1500 northern pike fingerlings (Esox lucius L.) and a low density of adult rudd (Scardinius erythrophthalmus). The offspring of the rudd served as food for the predator pike. Stacks of Salix twigs, roots of Nuphar lutea and plantlets of Chara globularis were brought in as refuge and spawning grounds for the pike, as well as shelter for the zooplankton.The impact of this biomanipulation on the light penetration, phytoplankton density, macrophytes, zooplankton and fish communities and on nutrient concentrations was monitored from March 1987 onwards. This paper presents the results in the first year after biomanipulation.The abundance of phytoplankton in the first summer (1987) after this biomanipulation was very low, and consequently accompanied by increase of Secchi-disc transparency and drastic decline of chlorophyll a concentration.The submerged vegetation remained scarce, with only 5 % of the bottom covered by macrophytes at the end of the season.Zooplankters became more abundant and there was a shift from rotifers to cladocerans, comprised mainly of Daphnia and Bosmina species, the former including at least 3 species.The offspring of the stocked rudd was present in the lake from the end of August 1987. Only 19% of the stocked pike survived the first year.Bioassays and experiments with zooplankton community grazing showed that the grazing pressure imposed by the zooplankton community was able to keep chlorophyll a concentrations and algal abundance to low levels, even in the presence of very high concentrations of inorganic N and P. The total nutrient level increased after biomanipulation, probably due to increased release from the sediment by bioturbation, the biomass of chironomids being high.At the end of 1987 Lake Zwemlust was still in an unstable stage. A new fish population dominated by piscivores, intended to control the planktivorous and benthivorous fish, and the submerged macrophytes did not yet stabilize.  相似文献   

9.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

10.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

11.
We examined the influence of water chemistry on zooplankton community structure in the unvegetated zone (open water) and among different types of macrophytes (helophytes and elodeids) in 12 ponds located in two types of catchment area (mid‐forest and mid‐field). An equal occurrence of rotifers and crustaceans was found in mid‐field ponds, while rotifers prevailed over crustaceans in mid‐forest ponds which may have been due to phytoflagellate prevalence, contributing to diminishing the diversity index. We found variation in physical‐chemical features between both types of ponds with higher trophic status, confirmed by eutrophy indicators (K. quadrata or B. longirwostris) frequent occurrence, in the case of mid‐field ponds. The type of water body (forest vs. field) was the best predictor of zooplankton species distribution using DCA analysis. Two groups of zooplankton species were distinguished: (1) related to the mid‐forest ponds (representatives of genera: Cephalodella, Lepadella, Lecane, Trichocerca), where zooplankton densities positively correlated with chlorophyll a and CDOC and (2) related to the mid‐field ponds (representatives of genera: Keratella, Bosmina or Ceriodaphnia). Spatial differentiation of zooplankton community structure was also recorded with lower species diversity attributed to the open water zone compared to vegetated areas. Crustacean densities rose along the heterogeneity gradient of a habitat (from the open water to the zone of elodeids), which indicates the best refuge conditions in the most complex habitat during the daylight‐hours in the ponds with fish presence. Rotifers (especially those equipped with morphological adaptations againt predators) remained in the open water despite the presence of fish. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
1. Using 5‐m2 field enclosures, we examined the effects of Elodea canadensis on zooplankton communities and on the trophic cascade caused by 4–5 year old (approximately 16 cm) roach. We also tested the hypothesis that roach in Elodea beds use variable food resources as their diet, mainly benthic and epiphytic macroinvertebrates, and feed less efficiently on zooplankton. Switching of the prey preference stabilises the zooplankton community and, in turn, also the fluctuation of algal biomass. The factorial design of the experiment included three levels of Elodea (no‐, sparse‐ and dense‐Elodea) and two levels of fish (present and absent). 2. During the 4‐week experiment, the total biomass of euplanktonic zooplankton, especially that of the dominant cladoceran Daphnia longispina, decreased with increase in Elodea density. The Daphnia biomass was also reduced by roach in all the Elodea treatments. Thus, Elodea provided neither a favourable habitat nor a good refuge for Daphnia against predation by roach. 3. The electivity of roach for cladocerans was high in all the Elodea treatments. Roach were able to prey on cladocerans in Elodea beds, even when the abundance and size of these prey animals were low. In addition to cladocerans, the diet of roach consisted of macroinvertebrates and detrital/plant material. Although the biomass of macroinvertebrates increased during the experiment in all Elodea treatments, they were relatively unimportant in roach diets regardless of the density of Elodea beds. 4. Euplanktonic zooplankton species other than Daphnia were not affected by Elodea or fish and the treatments had no effects on the total clearance rate of euplanktonic zooplankton. However, the chlorophyll a concentration increased with fish in all the Elodea treatments, suggesting that fish enhanced algal growth through regeneration of nutrients. Thus, our results did not unequivocally show that Elodea hampered the trophic cascade of fish via lowered predation on grazing zooplankton. 5. In treatments with dense Elodea beds (750 g FW m?2), chlorophyll a concentration was always low suggesting that phytoplankton production was controlled by Elodea. Apparently, the top‐down control of phytoplankton biomass by zooplankton was facilitated by the macrophytes and operated simultaneously with control of phytoplankton production by Elodea.  相似文献   

13.
Aquatic macrophytes produce considerable structural variation within the littoral zone and as a result the vegetation provides refuge to prey communities by hindering predator foraging activities. The behavior of planktivorous fish Pseudorasbora parva (Cyprinidae) and their zooplankton prey Daphnia pulex were quantified in a series of laboratory experiments with artificial vegetation at densities of 0, 350, 700, 1400, 2100 and 2800 stemsm–2. Swimming speeds and foraging rates of the fish were recorded at different prey densities for all stem densities. The foraging efficiency of P. parva decreased significantly with increasing habitat complexity. This decline in feeding efficiency was related to two factors: submerged vegetation impeded swimming behavior and obstructed sight while foraging. This study separated the effects of swimming speed variation and of visual impairment, both due to stems, that led to reduced prey–predator encounters and examined how the reduction of the visual field volume may be predicted using a random encounter model.  相似文献   

14.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

15.

Horizontal migrations of zooplankton between macrophyte patches and open areas were investigated in the sparsely vegetated littoral zone of the Sulejow Reservoir in June-July 2000 and 2001, using one-litre plastic traps. Large-bodied zooplankton: daphnids and copepods generally swam towards the open water at dusk and towards submerged macrophytes at dawn. Small-bodied zooplankton (Bosmina sp., Chydorus sp.) did not show any pattern of horizontal movement. At the time of the research the phytoplankton community was dominated by eatable diatoms (Cyclotella sp.), whose biomass reached 14 mg l−1. Thus, bottom-up forces (food scarcity) are not likely to be responsible for the observed zooplankton migrations. Analyses of fish stomach contents showed high contribution of large zooplankters to the food of juvenile roach (Rutilus rutilus) and perch (Perca fluviatilis) which densely inhabited the littoral zone of reservoir. High fish pressure in the littoral zone along with high density of the predatory cladoceran, Leptodora kindtii in the open water, suggest that top-down forces (predatory pressure) were responsible for the migration of large zooplankton. At dusk predatory pressure of fish fry exceeded that of L. kindtii, forcing endangered zooplankton to escape from macrophytes towards open water. The opposite situation occurred at dawn. The consequences of the relationships for both zooplankton and fish fry communities dynamics are discussed.

  相似文献   

16.
Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged macrophytes suppress phytoplankton in the absence of Daphnia. In order to investigate these mechanisms further, we conducted an outdoor mesocosm experiment to study the effect of submerged macrophytes (Elodea nuttallii) on phytoplankton and zooplankton biomass. The experiment combined four nutrient addition levels (0, 10, 100, and 1000 μg P l−1; N/P ratio: 16) with three macrophyte levels (no macrophytes, artificial macrophytes, and real macrophytes). We inoculated the tanks with species-rich inocula of phytoplankton and zooplankton but excluded fish or macro-invertebrates. Probably due to the lack of predators in the mesocosms, potential grazing rates of pelagic zooplankton (estimated from zooplankton biomass) did not differ between the macrophyte treatment combinations. Compared to the treatment combinations without macrophytes, lower phytoplankton biomass occurred in the treatment combinations with real macrophytes at all the nutrient addition levels and in those with artificial macrophytes at all the nutrient levels except the highest. Significantly, higher abundances of plant-associated filter feeders (Simocephalus vetulus and Ceriodaphnia spp.) occurred in the treatment combinations with real and artificial macrophytes. The estimated potential grazing rate of these plant-associated filter feeders indicated that these filter feeders could be responsible for the lower phytoplankton biomass in the presence of real and artificial macrophytes. Our results suggest that the plant-associated filter feeders may be significant grazers in vegetated shallow lakes.  相似文献   

17.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

18.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

19.
Predation refugia can facilitate the coexistence of predators and prey within an ecosystem by weakening trophic links between the two. The marginal macrophytes of shallow lakes are used facultatively by zooplankton to escape fish predation, leading to the stabilisation of lentic food webs. Little is known about such a role for the marginal macrophytes of lotic systems. In this paper, we examine whether the marginal macrophytes of chalk streams help buffer the interaction between the freshwater shrimp, Gammarus pulex and a benthic fish predator, Cottus gobio, both characteristically abundant in such systems. Quantitative surveys were taken of Gammarus and bullheads in winter and summer in a southern English chalk stream. These indicated that Gammarus seasonally switched their habitat preference, from marginal macrophytes in summer, to midchannel habitats in winter. Bullheads exhibited an opposite trend, preferring midchannel habitats in summer and all habitats, particularly marginal macrophytes, in winter. Large Gammarus and precopula pairs were found almost exclusively in the margins in summer. This spatial separation between Gammarus and bullheads in summer, though not in winter, was reflected in bullhead diets, as determined by gut analysis. In field manipulation experiments, bullhead presence was the strongest factor explaining the between‐habitat distribution of Gammarus in both summer and winter, indicating that the habitat shift of Gammarus was driven by the distribution of fish. Other abundant invertebrate taxa, including Asellus, mayflies and chironomids, exhibited little avoidance of habitat patches of high bullhead density. We conclude that marginal macrophytes in chalk streams can potentially facilitate the coexistence of high densities of both Gammarus and bullheads by spatially separating predator and prey in summer. They may further allow large populations of Gammarus to persist in the presence of high bullhead density at stretch‐wide spatial scales, by reducing the predation by bullheads of large breeding and newly born individuals of Gammarus in summer.  相似文献   

20.
Spatial and temporal distribution of fish and zooplankton in a shallow lake   总被引:1,自引:0,他引:1  
Summary 1. We performed both a large- and a small-scale echo sounding study on the spatial and temporal distribution of fish (mainly roach, Rutilus rutilus and perch, Perca fluviatlis ), as well as a small-scale study of zooplankton distribution in the small, shallow and eutrophic Lake Hanebjerg in Denmark. In the small-scale study, sampling was conducted in open water as well as in the edge zone immediately outside two different types of vegetation.
2. Fish daytime abundances differed between the northern and the southern parts of the lake and, on a small scale, small fish aggregated in the edge zones during day, preferably outside dense emergent vegetation. Copepods avoided emergent vegetation, while cladocerans showed no habitat preference. Both small fish and cladoceran numbers were found to be higher during night than day.
3. The relative abundance (number per sample) of cladocerans in the edge zone immediately outside vegetation was negatively correlated with the relative abundance of fish in that zone. There was no correlation between cladoceran and fish abundance in open water, or between the relative abundance of copepods and fish.
4. The presence of pelagic piscivores in combination with avoidance behaviour of both fish and zooplankton is a likely explanation for the observed distribution of small fish and cladocerans in Lake Hanebjerg. Both small- and large-scale distribution patterns may be dependent on the type and distribution of complex structure in the lake. Even in a small lake, large-scale patterns may affect the interpretation of small-scale data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号