首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Grouping behaviour, common across the animal kingdom, is known to reduce an individual''s risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group.

Methodology and Principal Findings

We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity.

Conclusions and Significance

Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions.  相似文献   

2.

Background and Purpose

To investigate the effect of locally applied nimodipine prolonged-release microparticles on angiographic vasospasm and secondary brain injury after experimental subarachnoid hemorrhage (SAH).

Methods

70 male Wistar rats were categorized into three groups: 1) sham operated animals (control), 2) animals with SAH only (control) and the 3) treatment group. SAH was induced using the double hemorrhage model. The treatment group received different concentrations (20%, 30% or 40%) of nimodipine microparticles. Angiographic vasospasm was assessed 5 days later using digital subtraction angiography (DSA). Histological analysis of frozen sections was performed using H&E-staining as well as Iba1 and MAP2 immunohistochemistry.

Results

DSA images were sufficient for assessment in 42 animals. Severe angiographic vasospasm was present in group 2 (SAH only), as compared to the sham operated group (p<0.001). Only animals within group 3 and the highest nimodipine microparticles concentration (40%) as well as group 1 (sham) demonstrated the largest intracranial artery diameters. Variation in vessel calibers, however, did not result in differences in Iba-1 or MAP2 expression, i.e. in histological findings for secondary brain injury.

Conclusions

Local delivery of high-dose nimodipine prolonged-release microparticles at high concentration resulted in significant reduction in angiographic vasospasm after experimental SAH and with no histological signs for matrix toxicity.  相似文献   

3.

Aims

To investigate the role of dopamine in cognitive and motor learning skill deficits after a traumatic brain injury (TBI), we investigated dopamine release and behavioral changes at a series of time points after fluid percussion injury, and explored the potential of amantadine hydrochloride as a chronic treatment to provide behavioral recovery.

Materials and Methods

In this study, we sequentially investigated dopamine release at the striatum and behavioral changes at 1, 2, 4, 6, and 8 weeks after fluid percussion injury. Rats subjected to 6-Pa cerebral cortical fluid percussion injury were treated by using subcutaneous infusion pumps filled with either saline (sham group) or amantadine hydrochloride, with a releasing rate of 3.6mg/kg/hour for 8 weeks. The dopamine-releasing conditions and metabolism were analyzed sequentially by fast scan cyclic voltammetry (FSCV) and high-pressure liquid chromatography (HPLC). Novel object recognition (NOR) and fixed-speed rotarod (FSRR) behavioral tests were used to determine treatment effects on cognitive and motor deficits after injury.

Results

Sequential dopamine-release deficits were revealed in 6-Pa-fluid-percussion cerebral cortical injured animals. The reuptake rate (tau value) of dopamine in injured animals was prolonged, but the tau value became close to the value for the control group after amantadine therapy. Cognitive and motor learning impairments were shown evidenced by the NOR and FSRR behavioral tests after injury. Chronic amantadine therapy reversed dopamine-release deficits, and behavioral impairment after fluid percussion injuries were ameliorated in the rats treated by using amantadine-pumping infusion.

Conclusion

Chronic treatment with amantadine hydrochloride can ameliorate dopamine-release deficits as well as cognitive and motor deficits caused by cerebral fluid-percussion injury.  相似文献   

4.

Purpose

Hemorrhagic shock and resuscitation is frequently associated with liver ischemia-reperfusion injury. The aim of the study was to investigate whether hypoxemic resuscitation attenuates liver injury.

Methods

Anesthetized, mechanically ventilated New Zealand white rabbits were exsanguinated to a mean arterial pressure of 30 mmHg for 60 minutes. Resuscitation under normoxemia (Normox-Res group, n = 16, PaO2 = 95–105 mmHg) or hypoxemia (Hypox-Res group, n = 15, PaO2 = 35–40 mmHg) followed, modifying the FiO2. Animals not subjected to shock constituted the sham group (n = 11, PaO2 = 95–105 mmHg). Indices of the inflammatory, oxidative and nitrosative response were measured and histopathological and immunohistochemical studies of the liver were performed.

Results

Normox-Res group animals exhibited increased serum alanine aminotransferase, tumor necrosis factor - alpha, interleukin (IL) -1β and IL-6 levels compared with Hypox-Res and sham groups. Reactive oxygen species generation, malondialdehyde formation and myeloperoxidase activity were all elevated in Normox-Res rabbits compared with Hypox-Res and sham groups. Similarly, endothelial NO synthase and inducible NO synthase mRNA expression was up-regulated and nitrotyrosine immunostaining increased in animals resuscitated normoxemically, indicating a more intense nitrosative stress. Hypox-Res animals demonstrated a less prominent histopathologic injury which was similar to sham animals.

Conclusions

Hypoxemic resuscitation prevents liver reperfusion injury through attenuation of the inflammatory response and oxidative and nitrosative stresses.  相似文献   

5.

Background

Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion.

Method

A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition.

Results

After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue.

Conclusion

The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.  相似文献   

6.

Objective

To analyze in obese women the acute effects of the breath stacking technique on thoraco-abdominal expansion.

Design and Methods

Nineteen obese women (BMI≥30 kg/m2) were evaluated by anthropometry, spirometry and maximal respiratory muscle pressures and successively analyzed by Opto-Electronic Plethysmography and a Wright respirometer during quiet breathing and breath stacking maneuvers and compared with a group of 15 normal-weighted healthy women. The acute effects of the maneuvers were assessed in terms of total and compartmental chest wall volumes at baseline, end of the breath stacking maneuver and after the maneuver. Obese subjects were successively classified into two groups, accordingly to the response during the maneuver, group 1 = prevalent rib cage or group 2 = abdominal expansion.

Results

Age was significantly lower in group 1 than group 2. When considering the two obese groups, FEV1 was lower and minute ventilation was higher only in group 2 compared to controls group. During breath stacking, inspiratory capacity was significant differences in obese subjects with a smaller expansion of the pulmonary rib cage and a greater expansion of the abdomen compared to controls and also between groups 1 and 2. A significant inverse linear relationship was found between age and inspiratory capacity of the pulmonary rib cage but not of the abdomen.

Conclusions

In obese women the maximal expansion of the rib cage and abdomen is influenced by age and breath stacking maneuver could be a possible therapy for preventing respiratory complications.  相似文献   

7.

Aim

We have previously shown that lithium treatment immediately after hypoxia-ischemia (HI) in neonatal rats affords both short- and long-term neuroprotection. The aim of this study was to evaluate possible therapeutic benefits when lithium treatment was delayed 5 days, a time point when most cell death is over.

Methods

Eight-day-old male rats were subjected to unilateral HI and 2 mmol/kg lithium chloride was injected intraperitoneally 5 days after the insult. Additional lithium injections of 1 mmol/kg were administered at 24 h intervals for the next 14 days. Brain injury was evaluated 12 weeks after HI. Serum cytokine measurements and behavioral analysis were performed before sacrificing the animals.

Results

Brain injury, as indicated by tissue loss, was reduced by 38.7%, from 276.5±27.4 mm3 in the vehicle-treated group to 169.3±25.9 mm3 in the lithium-treated group 12 weeks after HI (p<0.01). Motor hyperactivity and anxiety-like behavior after HI were normalized by lithium treatment. Lithium treatment increased neurogenesis in the dentate gyrus as indicated by doublecortin labeling. Serum cytokine levels, including IL-1α, IL-1β, and IL-6, were still elevated as late as 5 weeks after HI, but lithium treatment normalized these cytokine levels.

Conclusions

Delayed lithium treatment conferred long-term neuroprotection in neonatal rats after HI, and this opens a new avenue for future development of treatment strategies for neonatal brain injury that can be administered after the acute injury phase.  相似文献   

8.

Background

The radiation-induced energy metabolism dysfunction related to injury and radiation doses is largely elusive. The purpose of this study is to investigate the early response of energy metabolism in small intestinal tissue and its correlation with pathologic lesion after total body X-ray irradiation (TBI) in Tibet minipigs.

Methods and Results

30 Tibet minipigs were assigned into 6 groups including 5 experimental groups and one control group with 6 animals each group. The minipigs in these experimental groups were subjected to a TBI of 2, 5, 8, 11, and 14 Gy, respectively. Small intestine tissues were collected at 24 h following X-ray exposure and analyzed by histology and high performance liquid chromatography (HPLC). DNA contents in this tissue were also examined. Irradiation causes pathologic lesions and mitochondrial abnormalities. The Deoxyribonucleic acid (DNA) content-corrected and uncorrected adenosine-triphosphate (ATP) and total adenine nucleotides (TAN) were significantly reduced in a dose-dependent manner by 2–8 Gy exposure, and no further reduction was observed over 8 Gy.

Conclusion

TBI induced injury is highly dependent on the irradiation dosage in small intestine and inversely correlates with the energy metabolism, with its reduction potentially indicating the severity of injury.  相似文献   

9.

Background

Chronic heart failure is an important cause for morbidity and mortality in adults with congenital heart disease (ACHD). While NT-proBNP is an established biomarker for heart failure of non-congenital origin, its application in ACHD has limitations. The angiogenic factors Angiopoietin-1 and -2 (Ang-1, Ang-2), vascular endothelial growth factor (VEGF), and soluble receptor tyrosine kinase of the Tie family (sTie2) correlate with disease severity in heart failure of non-congenital origin. Their role in ACHD has not been studied.

Methods

In 91 patients Ang-2 and NT-proBNP were measured and related to New York Heart Association class, systemic ventricular function and parameters of cardiopulmonary exercise testing. Ang-1, VEGF, and sTie2 were also measured.

Results

Ang-2 correlates with NYHA class and ventricular dysfunction comparable to NT-proBNP. Further, Ang-2 showed a good correlation with parameters of cardiopulmonary exercise testing. Both, Ang-2 and NT-proBNP identified patients with severely limited cardiopulmonary exercise capacity. Additionally, Ang-2 is elevated in patients with a single ventricle physiology in contrast to NT-proBNP. VEGF, Ang-1, and sTie2 were not correlated with any clinical parameter.

Conclusion

The performance of Ang-2 as a biomarker for heart failure in ACHD is comparable to NT-proBNP. Its significant elevation in patients with single ventricle physiology indicates potential in this patient group and warrants further studies.  相似文献   

10.
11.

Background

Chronic heart failure is an important cause for morbidity and mortality in adults with congenital heart disease (ACHD). While NT-proBNP is an established biomarker for heart failure of non-congenital origin, its value in ACHD has limitations. Asymmetrical dimethylarginine (ADMA) correlates with disease severity and independently predicts adverse clinical events in heart failure of non-congenital origin. Its role in ACHD has not been investigated.

Methods

In 102 patients ADMA and NT-proBNP were measured and related to NYHA class, systemic ventricular function and parameters of cardiopulmonary exercise testing.

Results

In contrast to NT-proBNP ADMA differentiated between NYHA classes I-III. Both, ADMA and NT-proBNP showed a good correlation with parameters of cardiopulmonary exercise testing with comparable receiver-operating characteristic curves for identifying patients with severely limited cardiopulmonary exercise capacity.

Conclusion

ADMA seems to be a better biomarker than NT-proBNP for the assessment of NYHA class and as a good as NT-proBNP for the estimation of maximum exercise capacity in adults with congenital heart disease. Its use in clinical routine should be evaluated.  相似文献   

12.

Objective

Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF). This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.

Methods

Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6), the control group (Group C, n = 6), and the sham operation group (Group S, n = 6), and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG) from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.

Results

The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation.

Conclusions

HLF cardiopulmonary bypass surgery could intensify systemic inflammatory responses and oxidative stress on infant piglets, thus causing acute kidney injury. Ulinastatin might reduce such inflammatory response and oxidative stress and the extent of kidney injury.  相似文献   

13.

Background

In prolonged hemorrhagic shock, reductions in intestinal mucosal blood perfusion lead to mucosal barrier damage and systemic inflammation. Gastrointestinal failure in critically ill patients has a poor prognosis, so early assessment of mucosal barrier injury in shock patients is clinically relevant. Unfortunately, there is no serum marker that can accurately assess intestinal ischemia-reperfusion injury.

Objective

The aim of this study was to assess if serum diamine oxidase levels can reflect intestinal mucosal injury subsequent to prolonged hemorrhagic shock.

Methods

Thirty New Zealand white rabbits were divided into three groups: a control group, a medium blood pressure (BP) group (exsanguinated to a shock BP of 50 to 41 mm Hg), and a low BP group (exsanguinated to a shock blood pressure of 40 to 31 mm Hg), in which the shock BP was sustained for 180 min prior to fluid resuscitation.

Results

The severity of hemorrhagic shock in the low BP group was significantly greater than that of the medium BP group according to the post-resuscitation BP, serum tumor necrosis factor (TNF)-α, and arterial lactate. Intestinal damage was significantly more severe in the low BP group according to Chiu’s scoring, claudin-1, intercellular adhesion molecule (ICAM)-1, and myeloperoxidase expression. Serum diamine oxidase was significantly increased in the low BP group compared to the medium BP and control groups and was negatively correlated with shock BP.

Conclusion

Serum diamine oxidase can be used as a serological marker in evaluating intestinal injury and shows promise as an indicator of hemorrhagic shock severity.  相似文献   

14.

Background

Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts.

Methodology/Principal Findings

Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection.

Conclusions/Significance

Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species.  相似文献   

15.
16.

Background

Many animal models have been developed to study bronchopulmonary dysplasia (BPD). The preterm rabbit is a low-cost, easy-to-handle model, but it has a high mortality rate in response to the high oxygen concentrations used to induce lung injury. The aim of this study was to compare the mortality rates of two models of hyperoxia-induced lung injury in preterm rabbits.

Methods

Pregnant New Zealand white rabbits were subjected to caesarean section on gestational day 28 or 29 (full term  = 31 days). The premature rabbits in the 28-day gestation group were exposed to room air or FiO2 ≥95%, and the rabbits in the 29-day gestation group were exposed to room air or FiO2  = 80% for 11 days. The mean linear intercept (Lm), internal surface area (ISA), number of alveoli, septal thickness and proportion of elastic and collagen fibers were quantified.

Results

The survival rates in the 29-day groups were improved compared with the 28-day groups. Hyperoxia impaired the normal development of the lung, as demonstrated by an increase in the Lm, the septal thickness and the proportion of elastic fibers. Hyperoxia also decreased the ISA, the number of alveoli and the proportion of collagen fibers in the 28-day oxygen-exposed group compared with the control 28-day group. A reduced number of alveoli was found in the 29-day oxygen exposed animals compared with the control 29-day group.

Conclusions

The 29-day preterm rabbits had a reduced mortality rate compared with the 28-day preterm rabbits and maintained a reduction in the alveoli number, which is comparable to BPD in humans.  相似文献   

17.

Objective

To determine that 1) an age-dependent loss of inducible autophagy underlies the failure to recover from AKI in older, adult animals during endotoxemia, and 2) pharmacologic induction of autophagy, even after established endotoxemia, is of therapeutic utility in facilitating renal recovery in aged mice.

Design

Murine model of endotoxemia and cecal ligation and puncture (CLP) induced acute kidney injury (AKI).

Setting

Academic research laboratory.

Subjects

C57Bl/6 mice of 8 (young) and 45 (adult) weeks of age.

Intervention

Lipopolysaccharide (1.5 mg/kg), Temsirolimus (5 mg/kg), AICAR (100 mg/kg). Measurements and Main Results: Herein we report that diminished autophagy underlies the failure to recover renal function in older adult mice utilizing a murine model of LPS-induced AKI. The administration of the mTOR inhibitor temsirolimus, even after established endotoxemia, induced autophagy and protected against the development of AKI.

Conclusions

These novel results demonstrate a role for autophagy in the context of LPS-induced AKI and support further investigation into like interventions that have potential to alter the natural history of disease.  相似文献   

18.

Purpose

Controlled cortical impact (CCI) models in adult and aged Sprague-Dawley (SD) rats have been used extensively to study medial prefrontal cortex (mPFC) injury and the effects of post-injury progesterone treatment, but the hormone''s effects after traumatic brain injury (TBI) in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.

Methods

Twenty-eight-day old (PND 28) male Sprague Dawley rats received sham (n = 24) or CCI (n = 47) injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight) or vehicle injections on post-injury days (PID) 1–7, subjected to behavioral testing from PID 9–27, and analyzed for lesion size at PID 28.

Results

The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.

Conclusion

Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.  相似文献   

19.

Background

To compare the efficacy of the therapy of spinal cord injury with intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) by Meta-analysis.

Methods

Studies of the BBB scores after intravenous transplantation of BMSCs were searched out from Pubmed, SCI, Cochrane Library, Chinese journal full-text database, China Biology Medicinedisc and Wanfang data-base and analyzed by Review Manager 5.2.5.

Results

Nine randomized controlled animal trials were selected with 235 rats enrolled. The studies are divided to different subgroups by different models of SCI and different time to transplantion. The results of Meta-analysis in different subgroups both indicated that the rats of experimental group (BMSCs group) got better BBB scores than control group at 1, 3 and over 5 weeks after intravenous transplantation of BMSCs with significant differences. The heterogeneity between impacted injury model and oppressed injury model subgroups decreased with the passage of time (I2 = 75.8%, 39.7%, 0%). No heterogeneity was found between 3 d and 7 d subgroups.

Conclusion

The intravenous transplantation of BMSCs is an efficient way to cure spinal cord injury, which can improve the motor function of rats. The therapeutic window is wide.  相似文献   

20.

Background

Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion.

Materials and Methods

18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO.

Results

Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits.

Conclusions

Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号