首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用常规压片法,对风毛菊属(Saussurea)5种植物的染色体数目和核型类型进行分析。结果表明:大耳叶风毛菊(S.macrota)核型公式为2n=2x=26=10m+12sm+4st,属2A型;长梗风毛菊(S.dolichopoda)核型公式为2n=2x=26=14m+8sm+4st,属2A型;川陕风毛菊(S.licentiana)核型公式为2n=2x=28=12m+16sm,属2B型;杨叶风毛菊(S.populifolia)核型公式为2n=2x=28=6m+18sm+4st,属2B型;尾叶风毛菊(S.caudata)核型公式为2n=2x=30=14m+14sm+2st,属2A型。这5种风毛菊属植物中,除大耳叶风毛菊染色体数目和核型类型与前人报道的一致外,其余4种植物的染色体数目和核型类型均为首次报道,并在川陕风毛菊中发现1对B染色体。  相似文献   

2.
Morphometric karyotype characters were studied in 25Angelica spp. (Umbelliferae, Apioideae) and in one species of the related genusTommasinia. For three species the chromosome numbers are new. In our study the majority of the species investigated are diploids with 2n = 22, some are tetraploids with 2n = 44 (for these tetraploids also diploid cytotypes are reported in the literature). Among the diploid species,A. miqueliana has a distinct karyotype consisting of submetacentric and acrocentric chromosomes only, the remaining diploids with 2n = 22 as well as tetraploids with 2n = 44 have rather symmetrical karyotypes, consisting of metacentric and submetacentric chromosomes. The very different chromosome number 2n = 28 has been found inA. gmelinii. Its karyotype includes two distinct groups of chromosomes: 8 pairs of rather large metacentrics and submetacentrics and 6 pairs of very short and asymmetrical chromosomes. Chromosome numbers and structures appear to be useful in the taxonomy of some intrageneric taxa inAngelica.  相似文献   

3.
A comparison of the karyotypes of races D (2n=8), E (2n=10), B (2n=12) and C (2n=16) of B. lineariloba suggests that these races have in common a basic set of four chromosome pairs, and that the higher chromosome number races are related to race D by successive chromosome addition. — A study of meiosis in B × C and A1 × B hybrids supports this contention and elucidates the homologies of the additional chromosomes. — Meiotic pairing in hybrids between A and C is very complex. At present it can only be stated that there are extensive interchromosomal homologies between the two races. — Two phyletic schemes of the relationships of the races are considered. The second, which is favoured, involves successive chromosome addition, with the quasidiploid race E (2n = 10) giving rise to race B by diploidisation of the univalent chromosomes. This scheme is supported by features of univalent behaviour in the various races and their hybrids. — The ecogeographic distribution pattern of the races shows replacement of D by E by B by C as the species extends into more arid and more harsh environments. This replacement is also associated with increasing vigour. — It seems most likely that the addition chromosomes are derived from a race A (2n=4) source since they are added always by twos, and each addition increases both vigour and drought tolerance. Race A is the most vigorous and one of the most drought tolerant of the five races.It is suggested that the evolution of the races can be related to the increasing aridity of the Late Pleistocene and Recent geological epochs.  相似文献   

4.
The chromosome numbers of several species ofZamia from Mexico are reported.Z. paucijuga, distributed from central Oaxaca to Nayarit, has been found to have 2n = 23, 25, 26, 27 and 28. 2n = 28 is the highest chromosome number yet found in the cycads. Karyotypes of this species differ principally in the number of telocentric and metacentric chromosomes present in each; 2n = 23, 25, 26, 27 and 28 were found to have 5, 3, 2, 1 and 0 metacentric and 8, 12, 14, 16 and 18 telocentric chromosomes, respectively.Z. fischeri has been found to be 2n = 16,Z. furfuracea andZ. loddigesii 2n = 18.Zamia paucijuga on the basis of morphological and ecological characteristics, is considered to be an advanced member of this genus. Chromosome and karyotype evolution inZ. paucijuga may have occurred by centromeric fission of metacentric chromosomes; the karyotypes ofZ. paucijuga are strongly asymmetrical, suggesting that they evolved recently.  相似文献   

5.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

6.
Karyomorphological comparisons were made of 16 native and cultivated species ofSelaginella in Japan. The somatic chromosome numbers are 2n=16 inS. boninensis; 2n=18 inS. doederleinii, S. helvetica, S. limbata, S. lutchuensis, S. nipponica, S. selaginoides, S. tama-montana, andS. uncinata; 2n=20 inS. biformis, S. involvens, S. moellendorffii, S. remotifolia, andS. tamariscina; 2n=30 inS. rossii; and 2n=32 inS. heterostachys. The interphase nuclei of all species examined are uniformly assigned to the simple chromocenter type. The metaphase karyotype of 2n=16 (x=8) is 8 m (=median centromeric chromosomes)+8(st+t)(=subterminal and terminal). The group of the species having 2n=18 (x=9) is heterogeneous karyomorphologically: The karyotype ofS. nipponica is 2n=18=6 m+12(st+t),S. tama-montana 10 m+2 sm(=submedian)+6(st+t), andS. uncinata 6 m+7 sm+5(st+t). Although the remaining five species have the common karyotype 8 m+4 sm+6(st+t), the values of mean chromosome length are variable. Another group of the specles having 2n=20 (x=10) is homogeneous, since all species have the same karyotypes 8 m+4 sm+8(st+t) and have similar chromosome size. The karyotype of 2n=30 is 12 m+6 sm+12(st+t) and is suggested to be a triploid of x=10, and 2n=32=16m+16(st+t), a tetraploid of x=8. Thus, three kinds of basic chromosome numbers, x=8, 9, 10 are present in JapaneseSelaginella examined, and their karyomorphological relationships are discussed.  相似文献   

7.
The somatic karyotypes of 10 taxa belonging toAllium subgen.Molium (Liliaceae) from the Mediterranean area have been investigated using Giemsa C-band and fluorochrome (Hoechst, Quinacrine) banding techniques. A wide range of banding patterns has been revealed. InAllium moly (2n = 14),A. oreophilum (2n = 16) andA. paradoxum (2n = 16) C-banding is restricted to a region on each side of the nucleolar organisers and the satellites show reduced fluorescence with fluorochromes. The satellites are also C-banded and with reduced fluorescence inA. triquetrum (2n = 18), but two other chromosome pairs also have telomeric bands which are not distinguished by fluorochrome treatment. InA. erdelii (2n = 16) 4 pairs of metacentric chromosomes have telomeric C-bands while 2 pairs of telocentric chromosomes have centromeric C-banding. InA. subhirsutum (2n = 14),A. neapolitanum (2n = 28),A. trifoliatum subsp.hirsutum (2n = 14) andA. trifoliatum subsp.trifoliatum (2n = 21) chromosomes with long centromeres, consisting of a centromere and nucleolar organiser are positively C-banded on each side of the constriction. InA. subhirsutum banding is confined to the pair of chromosomes with this feature, whereas inA. neapolitanum one additional chromosome pair has telomeric bands and inA. trifoliatum there are varying numbers of chromosomes with centromeric and telomeric bands, depending on the subspecies.A. zebdanense (2n = 18) shows no C-bands. The banding patterns in this subgenus are compared with those recorded for otherAllium species and with the sectional divisions in the genus. Evidence from the banding patterns for allopolyploidy inA. trifoliatum subsp.trifoliatum andA. neapolitanum is discussed.  相似文献   

8.
This work examines the cytogeographical distribution, the morphological characters, and the karyotypes of threeCrepis species endemic to Greece (C. sibthorpiana, C. incana, andC. heldreichiana). C. sibthorpiana is diploid (2n = 2x = 8),C. incana is diploid (2n = 2x = 8) and tetraploid (2n = 4x = 16, 17), andC. heldreichiana is always dekaploid (2n = 10x = 40). The Giemsa positive bands, usually pairs of dots, are mainly centromeric inC. incana, while they are terminal inC. sibthorpiana (on the short arm of all chromosomes) and inC. heldreichiana (on both arms of all chromosomes). Intercalary C-bands are scarce and usually variable within karyotypes, individuals, and species. The most variable karyotype both in Feulgen and Giemsa preparations is that ofC. incana, in which also supernumerary chromosomes were observed, which are polysomic to standard set members. On the basis of morphological and karyological data the evolutionary relationships among the threeCrepis taxa are discussed.  相似文献   

9.
V. J. Birstein 《Genetica》1991,83(2):107-120
The karyotypes of 10 species belonging to the Neorhabdocoela order (Turbellaria) are described: Proxenetes flabelliger, 2n=6 (Trigonostomidae), Promesostoma rostratum, 2n=12 (Promesostomatidae), Castrada sp., 2n=6, Rhynchomesostoma rostratum, 2n=6, Bothromesostoma esseni, 2n=10, Mesostoma lingua, 2n=8 (Typhloplanidae), Provortex karlingi, 2n=8 (Provorticidae), Halamovortex macropharynx, 2n=16 (Dalyellidae), Macrorhynchus crocea, 2n=16, and Gyratrix hermaphroditus, 2n=4 (Polycystidae). It is proposed that the karyotypes of the ancestral marine neorhabdocoel forms, as well as those of the other groups of turbellarians, must have consisted of 16–20 biarmed chromosomes. The processes of adaptation and speciation in each group seem to be accompanied by a gradual decrease in chromosome number to 2n=8–4, this being due to Robertsonian fusions and translocations. In some freshwater turbellarians the diploid number increased by polyploidisation. The same processes evidently took place in different groups of parasitic worms.  相似文献   

10.
Summary Pachytene chromosome morphology was compared in nine races ofRicinus communis L. (2n = 20), using pollen mother cells (PMCs) and light microscopy. Of the ten bivalents, only the two possessing nucleolar organizing regions (NORs), chromosomes 2 and 7, exhibit structural variations among the races. The NORs are located in the short arms of these two chromosomes. Most of the observed structural variations affect these short arms, which are similar morphologically and consist largely of heterochromatic segments. The PMCs contain a single nucleolus and this is associated with the NOR of each of the two chromosomes at a particular frequency in each race. In eight races, a nucleolar constriction (NC) is present in either chromosome 2 or chromosome 7. In these races, the nucleolus is associated with the chromosome possessing an NC at a frequency of 100% and with the chromosome lacking an NC at a frequency ranging between 5.6 and 100%, depending upon the race. No microscopically visible NC is present in the ninth race. In this race, the nucleolus is associated with both chromosomes 2 and 7 at a frequency of 100%. The association of the nucleolus with a chromosome possessing an NC is at the NC and with a chromosome lacking an NC is at the terminal heterochromatic segment of the short arm. Several interpretations are offered to account for the variations in frequency of association between the nucleolus and each of the nucleolar organizing chromosomes. It is suggested that the two non-linked NORs have evolved through some intragenomic changes rather than polyploidy, that this species is highly intolerant to structural variations other than those occurring in or near the NORs, and that structural variations in the nucleolar organizing chromosomes are not associated with racial variations in plant phenotype.Paper of the Journal Series, New Jersey Agricultural Experiment Station  相似文献   

11.
Chromosome studies of four HimalayanTorilis species reveal a remarkable interand intraspecific differentiation of chromosome numbers and karyotypes:T. arvensis (2n = 12),T. leptophylla (2n = 12),T. Stocksiana (2n = 36) andT. japonica (2n = 16). Base numbers inTorilis are x = 6, 8, 9 and 11.  相似文献   

12.
Studies on chromosome numbers and karyotypes in Orchid taxa from Apulia (Italy) revealed triploid complements inOphrys tenthredinifera andOrchis italica. InO. tenthredinifera there is no significant difference between the diploid and the triploid karyotypes. The tetraploid cytotype ofAnacamptis pyramidalis forms 36 bivalents during metaphase I in embryo sac mother cells. Aneuploidy was noticed inOphrys bertolonii ×O. tarentina with chromosome numbers n = 19 and 2n = 38. There were diploid (2n = 2x = 36), tetraploid (2n = 4x = 72), hexaploid (2n = 6x = 108) and octoploid (2n = 8x = 144) cells in the ovary wall of the diploid hybridOphrys apulica ×O. bombyliflora. Evolutionary trends inOphrys andOrchis chromosomes are discussed.  相似文献   

13.
A comparison of karyotypes ofBrachyscome breviscapis (2n = 8),B. lineariloba cytodemes E (2n = 10), B (2n = 12) and C (2n = 16) suggests that these species have a homoelogous basic set of four chromosome pairs, two large pairs and two small, and that theB. lineariloba cytodemes E, B and C are related toB. breviscapis by successive additions of small chromosomes. A pronounced asynchrony of chromosome condensation between these large and small chromosomes has been observed. In the artificial hybrids betweenB. dichromosomatica (2n = 4) ×B. breviscapis, and theB. lineariloba cytodemes, theB. dichromosomatica chromosomes are similar in size and condensation behaviour to the small chromosomes ofB. breviscapis and ofB. lineariloba cytodemes E, B and C. Meiotic pairing in these hybrids also demonstrates the strong affinities between these chromosomes. It is suggested thatB. breviscapis may be of amphidiploid origin between a species with two large early condensing chromosome pairs and another,B. dichromosomatica-like species with two small late condensing pairs. It seems most likely that the additional small and late condensing chromosomes inB. lineariloba cytodemes E, B and C are derived from theB. dichromosomatica-like parent, and that each addition increases vigour, fecundity and drought tolerance, allowing these cytodemes to colonize more open and arid environments. Transmission of the univalents in the quasidiploidB. lineariloba cytodeme E was verified as being via the pollen, and not via the embryo sacs.The cytology ofBrachyscome lineariloba (Compositae, Asteroidae), 10.  相似文献   

14.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

15.
以2份角堇与4份大花三色堇自交系为试验材料,采用染色体常规压片方法,观察和分析了它们的细胞染色体数目、相对长度、平均臂比等核型指标,以明确两种植物细胞学特点,为分类以及育种提供理论依据。结果表明:(1)2份角堇自交系染色体数目均为2n=2x=26,染色体基数为x=13,染色体核型公式分别为2n=2x=26=8m+12sm+6st、2n=2x=26=4m+16sm+6st,核型不对称系数为67.20%~70.10%,核型分类均属于3B。(2)4份大花三色堇自交系均为四倍体,其中2份(EYO-1-2-1-4、DSRFY-1-1-2)染色体数目为44,核型公式为2n=4x=44=4m+16sm+6st、2n=4x=44=16m+24sm+4st;2份(G10-1-3-1-4、XXL-YB-1-1-1-1)染色体数目为48,核型公式分别为2n=4x=48=8m+20sm+20st、2n=4x=48=4m+36sm+8st,核型不对称系数为66.74%~71.77%,核型分类属于2B、3B。  相似文献   

16.
The chromosome numbers of nearly all species of the grass subtribesAristaveninae andAirinae from Europe and northern Africa are presented. Among theAristaveninae the genusAristavena has 2n = 14 chromosomes, whereasDeschampsia forms a polyploid series with the basic number x = 13. In the subtribeAirinae the basic number x = 7 predominates.Avenella includes a polyploid series up to dekaploidy, whilst the lowest diploid value so far known in grasses — caused by descending dysploidy — exists in the annual generaAiropsis andPeriballia with 2n = 8.From both subtribes 12 different karyotypes are described and depicted as idiograms. The basic karyotypes ofCorynephorus, Periballia andVahlodea differ from each other by different chromosome length. SAT-chromosomes in theAirinae vary somewhat. Some marker chromosomes eludicate phylogenetic relationships. Amphiplasty appears in various genera and was studied particularly in the amphidiploidAira caryophyllea. Karyological and genomatic trends are considered in relation to evolutionary strategies of annuals and perennials.The nuclear DNA content of some species has been determined cytophotometrically. In subtribeAirinae a positive correlation exists between chromosome volume, pollen diameter, and DNA content. A comparison of the duration of microsporogenesis and microgametogenesis in annual and perennial species with their nuclear DNA content has shown that a primary nucleotypic influence is not recognizable.
  相似文献   

17.
A new chromosome number (2n=4) forOrnithogalum tenuifolium Delaroche is reported. The new chromosome race is postulated to have originated by a Robertsonian translocation from a Southern African chromosome race with six chromosomes, and represents thus the final step in a series of decreasing basic number of the species.  相似文献   

18.
The Ranunculus alpestris-group comprises six white-flowered species growing in mostly alpine zones of central and southern European mountains. They all are diploid with 2n=16 chromosomes. The common karyotype of the group was established based on 75 metaphases (6–26 metaphases per species). The haploid karyotype consists of four metacentric (chromosomes 1, 3, 6, 7) and four more or less subtelocentric chromosomes (2, 4, 5, 8). This karyotype is similar to that of other white-flowered European Ranunculus species as well as the yellow-flowered R. thora-group. Analysis of karyotypes partly confirms relationships inferred from molecular phylogenies. Species with this karyotype are placed on rather basal branches in existing phylogenies, which may indicate that this karyotype is primitive within the genus Ranunculus.  相似文献   

19.
Summary Four of 1,240 cultivated barley lines collected from different regions of the world and 3 of 120 lines of wild barley, Hordeum spontaneum C. Koch, carry spontaneous reciprocal translocations. Break-point positions and rearrangements in the interchanged chromosomes have been examined by both test crosses and Giemsa banding techniques. The four translocation lines in cultivated barley were all of Ethiopian origin and have the same translocation involving chromosomes 2 and 4. The breakpoints are at the centromeres of both chromosomes, resulting in interchanged chromosomes 2S+4S and 2L+4L (S=short arm, L=long arm). A wild barley line, Spont.II, also has translocated chromosomes 2 and 4 which are broken at the centromeres. The resultant chromosomes are, however, 2S+4L and 2L+4S. Another wild barley line, Spont.S-4, has interchanged chromosomes with breakpoints in the short arm of chromosome 3 and the long arm of chromosome 7. In addition, this line has a paracentric inversion in the short arm of chromosome 7 that includes a part of nucleolar constriction, resulting in two tandemly arranged nucleolar constrictions. The third wild barley line, Spont.S-7, has interchanged chromosomes with breakpoints in the long arms of both chromosomes 3 and 6. The translocated chromosome 3 is metacentric and the translocated chromosome 6 has a long arm similar in length to the long arm of chromosome 7.  相似文献   

20.
The karyotypes of two populations ofFestucopsis serpentini (2n = 2x = 14) endemic to Albania were investigated in detail by Giemsa C- and N-banding, AgNO3 staining, and in situ hybridization with an rDNA probe. The complements consisted of 14 large chromosomes, 10 metacentric and 4 SAT-chromosomes, a metacentric and a submetacentric pair. SAT-chromosomes from one population carried exclusively minute satellites, whereas SAT-chromosomes from another population also carried larger polymorphic satellites, suggesting a geographical differentiation. The existence of four chromosomes with nucleolus forming activity was established through AgNO3 staining; however, the rDNA probe additionally hybridized to intercalary positions in the short arms of two metacentric chromosomes revealing two inactive rDNA sites. C-banding patterns comprised from zero and up to four very small to larger, generally telomeric bands per chromosome giving low levels of constitutive heterochromatin. Similarities in chromosome morphology and C-banding patterns identified the homologous relationships of all chromosomes in one population, but of three pairs only in the other. Reliable identification of homologous chromosomes between plants was only possible for the SAT-chromosomes. A comparison between the C-banded karyotypes ofF. serpentini andPeridictyon sanctum supports their position in two genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号