首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron-neutron capture therapy (BNCT) and magnetic resonance imaging (MRI) are quite attractive techniques for treatment and diagnosis of cancer, respectively. In order to develop practical tools for BNCT and MRI, novel compounds containing both the trifluoromethyl group and 10B atom in a single molecule were designed. In the present study, p-boronophenylalanine and p-boronophenylalaninol with the trifluoromethyl group were synthesized, and 19F NMR measurements of these compounds were carried out.  相似文献   

2.
Magnetic resonance imaging (MRI) and boron-neutron capture therapy (BNCT) are quite attractive techniques for diagnosis and treatment of cancer, respectively. In order to progress the study on both MRI and BNCT, the novel compounds containing 19F and 10B atoms in a single molecule were designed and synthesized. In the present paper, the syntheses and the internalization rates into tumor cells of these compounds are elucidated.  相似文献   

3.
Potential boron neutron capture therapy (BNCT) agents have been designed on the basis of the evidence about translocator protein (TSPO) overexpression on the outer mitochondrial membrane of tumor cells. The structure of the first TSPO ligand bearing a carborane cage (compound 2d) has been modified in order to find a suitable candidate for in vivo studies. The designed compounds were synthesized and evaluated for their potential interaction with TSPO and tumor cells. In vitro biological evaluation showed in the case of fluoromethyl derivative 4b a nanomolar TSPO affinity very similar to that of 2d, a significantly lower cytotoxicity, and a slightly superior performance as boron carrier toward breast cancer cells. Moreover, compound 4b could be used as a 1?F magnetic resonance imaging (MRI) agent as well as labeled with 11C or 1?F to obtain positron emission tomography (PET) radiotracers in order to apply the "see and treat" strategy in BNCT.  相似文献   

4.
Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11]2?-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.  相似文献   

5.
Despite the improvements in cancer therapy during the past years, high-grade gliomas and many other types of cancer are still extremely resistant to current forms of therapy. Boron neutron capture therapy (BNCT) provides a promising way to destroy cancer cells without damaging healthy tissue. However, BNCT in practice is still limited due to the lack of boron-containing compounds that selectively deliver boron to cancer cells. Since many neuroendocrine tumors show an overexpression of the somatostatin receptor, it was our aim to synthesize compounds that contain a large number of boron atoms and still show high affinity toward this transmembrane receptor. The synthetic peptide Tyr (3)-octreotate (TATE) was chosen as a high-affinity and internalizing tumor targeting vector (TTV). Novel boron cluster compounds, containing 10 or 20 boron atoms, were coupled to the N-terminus of TATE. The obtained affinity data demonstrate that the use of a spacer between TATE and the closo-borane moiety is the option to avoid a loss of biological affinity of closo-borane conjugated TATE. For the first time, it was shown that closo-borane conjugated regulatory peptides retain high biological affinity and selectivity toward their transmembrane tumor receptors. The results obtained and the improvement of spacer and boron building block chemistry may stimulate new directions for BNCT.  相似文献   

6.
Boron neutron capture therapy (BNCT) represents a promising approach for tumor therapy. A critical requirement for BNCT is tumor targeting, a goal that is currently addressed with the development of low and high molecular weight agents capable of interacting with receptors expressed by cancer cells. Here, we describe a new bioconjugate (HApCB) composed by n-propyl carborane linked to hyaluronan (HA) via an ester linkage for a degree of substitution of approximately 30%, leading to a water-soluble derivative. The structure and main physicochemical characteristics of the new HA derivative were determined by means of Fourier transform infrared, fluorescence, and 1H, 13C, and 10B NMR analysis and are herein reported in detail. As HA is recognized by the CD44 antigen, densely populating the surface of many tumor cells, HApCB is expected to deliver boron atoms from the locally released carborane cages directly to target cells for antitumor application in BNCT. In vitro biological experiments showed that HApCB was not toxic for a variety of human tumor cells of different histotypes, specifically interacted with CD44 as the native unconjugated HA, and underwent uptake by tumor cells, leading to accumulation of amounts of boron atoms largely exceeding those required for a successful BNCT approach. Thus, HApCB may be regarded as a promising new BNCT agent for specific targeting of cancer cells overexpressing the CD44 receptor.  相似文献   

7.
Boron neutron capture therapy (BNCT) is based on selective accumulation of 10B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg 10B/kg) was administered to tumor-bearing hamsters. Groups of 3–5 animals were killed humanely at nine time-points, 3–12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24–35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7–11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.  相似文献   

8.
Boron neutron capture therapy (BNCT) is one of the radiotherapies that involves the use of boron-containing compounds for the treatment of cancer. Boron-10 (10B) containing compounds that can accumulate in tumor tissue are expected to be suitable agents for BNCT. We report herein on the design and synthesis of some new BNCT agents based on a d-glucose scaffold, since glycoconjugation has been recognized as a useful strategy for the specific targeting of tumors. To introduce a boryl group into a d-glucose scaffold, we focused on the hydroboration of d-glucal derivatives, which have a double bond between the C1 and C2 positions. It was hypothesized that a C–B bond could be introduced at the C2 position of d-glucose by the hydroboration of d-glucal derivatives and that the products could be stabilized by conversion to the corresponding boronic acid ester. To test this hypothesis, we prepared some 2-boryl-1,2-dideoxy-d-glucose derivatives as boron carriers and evaluated their cytotoxicity and cellular uptake activity to cancer cells, especially under hypoxic conditions.  相似文献   

9.
Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new “B2” configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in “B1” experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94–96%) than in control (16%) and BO groups (9–38%), and did not differ significantly from the “B1” results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.  相似文献   

10.
In the present study the therapeutic effect and potential toxicity of the novel "Sequential" boron neutron capture therapy (Seq-BNCT) for the treatment of oral cancer was evaluated in the hamster cheek pouch model at the RA-3 Nuclear Reactor. Two groups of animals were treated with "Sequential" BNCT, i.e., BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (Seq-24h-BNCT) or 48 h (Seq-48h-BNCT) later. In an additional group of animals, BPA and GB-10 were administered concomitantly [(BPA + GB-10)-BNCT]. The single-application BNCT was to the same total physical tumor dose as the "Sequential" BNCT treatments. At 28 days post-treatment, Seq-24h-BNCT and Seq-48h-BNCT induced, respectively, overall tumor responses of 95 ± 2% and 91 ± 3%, with no statistically significant differences between protocols. Overall response for the single treatment with (BPA + GB-10)-BNCT was 75 ± 5%, significantly lower than for Seq-BNCT. Both Seq-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in the dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47 ± 12% and 60 ± 22% of the animals, respectively. No normal tissue toxicity was associated with tumor response for any of the protocols. "Sequential" BNCT enhanced tumor response without an increase in mucositis in dose-limiting precancerous tissue.  相似文献   

11.
We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3.  相似文献   

12.
Infusions of boronophenylalanine-fructose complex (BPA-F), at doses up to 900 mg/kg of BPA and 860 mg/kg of fructose, have been used to deliver boron to cancer tissue for boron neutron capture therapy (BNCT). In patients with phenylketonuria (PKU), phenylalanine accumulates, which is harmful in the long run. PKU has been an exclusion criterion for BPA-F-mediated BNCT. Fructose is harmful to individuals with hereditary fructose intolerance (HFI) in amounts currently used in BNCT. The harmful effects are mediated through induction of hypoglycemia and acidosis, which may lead to irreversible organ damage or even death. Consequently, HFI should be added as an exclusion criterion for BNCT if fructose-containing solutions are used in boron carriers. Non-HFI subjects may also develop symptoms, such as gastrointestinal pain, if the fructose infusion rate is high. We therefore recommend monitoring of glucose levels and correcting possible hypoglycemia promptly. Except for some populations with extremely low PKU prevalence, HFI and PKU prevalences are similar, approximately 1 or 2 per 20,000.  相似文献   

13.

Purpose

Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed.

Materials and Methods

Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment.

Results

The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment.

Conclusions

This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.  相似文献   

14.
Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.  相似文献   

15.
Boron neutron capture therapy (BNCT) is a binary cancer therapy, which combines the biochemical targeting of a boron‐containing drug with the regional localization of radiation treatment. Although the concept of BNCT has been known for decades, the selective delivery of boron into tumor cells remains challenging. G protein‐coupled receptors that are overexpressed on cancer cells in combination with peptidic ligands can be potentially used as shuttle system for a tumor‐directed boron uptake. In this study, we present the generation of short, boron‐rich peptide conjugates that target the ghrelin receptor. Expression of the ghrelin receptor on various cancer cells makes it a viable target for BNCT. We designed a novel hexapeptide super‐agonist that was modified with different specifically synthesized carborane monoclusters and tested for ghrelin receptor activation. A meta‐carborane building block with a mercaptoacetic acid linker was found to be optimal for peptide modification, owing to its chemical stability and a suitable activation efficacy of the conjugate. The versatility of this carborane for the development of peptidic boron delivery agents was further demonstrated by the generation of highly potent, boron‐loaded conjugates using the backbone of the known ghrelin receptor ligands growth hormone releasing peptide 6 and Ipamorelin.  相似文献   

16.
Abstract

The synthesis and encouraging biological findings with boron-containing nucleosides, such as 5-dihydroxyboryl-2′-deoxyuridine, which could be used for boron neutron capture therapy (BNCT) for the treatment of various malignancies, has provided momentum to synthesize several boron containing nucleosides and oligomers. BNCT is based on the property of the non-radioactive boron-10 isotope to capture low energy neutrons, thereby producing a localized cell-destroying nuclear reaction. Thus, irradiation of tumor cells with neutrons, following incorporation of the boronated nucleoside, would result in the destruction of tumor tissue only. Intracellular phosphorylation by nucleoside kinases, and/or incorporation into the cancer cell DNA as a false nucleotide precursor, followed by irradiation by neutrons, would lead primarily to tumor cell death. The synthetic and biological approaches for boronated pyrimidines, nucleosides, and oligonucleotides for BNCT are reviewed.  相似文献   

17.
The carboranyl nucleotides beta-D-5-o-carboranyl-2'-deoxyuridine (D-CDU), 1-(beta-L-arabinosyl)-5-o-carboranyluracil (D-ribo-CU) and the nucleotide base 5-o-carboranyluracil (CU), were developed as sensitizers for boron neutron capture therapy (BNCT). A structure activity study was initiated to determine the agent most suitable for targeting prostate tumors. Cellular accumulation studies were performed using LNCaP human prostate tumor cells, and the respective tumor disposition profiles were investigated in male nude mice bearing LNCaP and 9479 human prostate tumor xenografts in their flanks. D-CDU achieved high cellular concentrations in LNCaP cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. In vivo concentrations of D-CDU were similar in LNCaP and 9479 tumor xenografts. Studies in 9479 xenografted bearing mice indicated that increasing the number of hydroxyl groups in the sugar moeity of the carboranyl nucleosides corresponded with an increased rate and extent of renal elimination, shorter serum half-lives and an increased tissue specificity. Tumor/normal prostate ratios were greatest with the nucleoside base CU. These studies indicate that similar nucleoside analogues and bases may have different tissue affinities and retention properties, which should be considered when selecting agents for sensitizing specific tumors for eventual BNCT treatment. CU was found to be the most suitable compound for further development to treat prostate cancer.  相似文献   

18.
The hypothesis of boron neutron capture therapy (BNCT) research has been that the short-range, high-linear energy transfer radiation produced by the capture of thermal neutrons by (10)B will potentially control tumor and spare normal tissue only if the boron compound selectively targets tumor tissue within the treatment volume. In a previous in vivo study of low-dose BNCT mediated by GB-10 (Na(2)(10)B(10)H(10)) alone or combined with boronophenylalanine (BPA) in the hamster cheek pouch oral cancer model that was primarily designed to evaluate safety and feasibility, we showed therapeutic effects but no associated normal tissue radiotoxicity. In the present study, we evaluated the response of tumor, precancerous and normal tissue to high-dose BNCT mediated by GB-10 alone or combined with BPA. Despite the fact that GB-10 does not target hamster cheek pouch tumors selectively, GB-10-BNCT induced a 70% overall tumor response with no damage to normal tissue. (GB-10+BPA)-BNCT induced a 93% overall tumor response with no normal tissue radiotoxicity. Light microscope analysis showed that GB-10-BNCT selectively damages tumor blood vessels, sparing precancerous and normal tissue vessels. In this case, selective tumor lethality would thus result from selective blood vessel damage rather than from selective uptake of the boron compound.  相似文献   

19.
Successful treatment of cancer by boron neutron capture therapy (BNCT) requires the selective delivery of (10)B to constituent cells within a tumor. The expression of the folate receptor is amplified in a variety of human tumors and potentially might serve as a molecular target for BNCT. In the present study we have investigated the possibility of targeting the folate receptor on cancer cells using folic acid conjugates of boronated poly(ethylene glycol) (PEG) containing 3rd generation polyamidoamine dendrimers to obtain (10)B concentrations necessary for BNCT by reducing the uptake of these conjugates by the reticuloendothelial system. First we covalently attached 12-15 decaborate clusters to 3rd generation polyamidoamine dendrimers. Varying quantities of PEG units with varying chain lengths were then linked to these boronated dendrimers to reduce hepatic uptake. Among all prepared combinations, boronated dendrimers with 1-1.5 PEG(2000) units exhibited the lowest hepatic uptake in C57BL/6 mice (7.2-7.7% injected dose (ID)/g liver). Thus, two folate receptor-targeted boronated 3rd generation polyamidoamine dendrimers were prepared, one containing approximately 15 decaborate clusters and approximately 1 PEG(2000) unit with folic acid attached to the distal end, the other containing approximately 13 decaborate clusters, approximately 1 PEG(2000) unit, and approximately 1 PEG(800) unit with folic acid attached to the distal end. In vitro studies using folate receptor (+) KB cells demonstrated receptor-dependent uptake of the latter conjugate. Biodistribution studies with this conjugate in C57BL/6 mice bearing folate receptor (+) murine 24JK-FBP sarcomas resulted in selective tumor uptake (6.0% ID/g tumor), but also high hepatic (38.8% ID/g) and renal (62.8% ID/g) uptake, indicating that attachment of a second PEG unit and/or folic acid may adversely affect the pharmacodynamics of this conjugate.  相似文献   

20.
Application of neutrons to cancer treatment has been a subject of considerable clinical and research interest since the discovery of the neutron by Chadwick in 1932 (3). Boron neutron capture therapy (BNCT) is a technique of radiation oncology which is used in treating brain cancer (glioblastoma multiform) or melanoma and that consists of preferentially loading a compound containing 10B into the tumor location, followed by the irradiation of the patient with a beam of neutron. Dose distribution for BNCT is mainly based on Monte Carlo simulations. In this work, the absorbed dose spatial distribution resultant from an idealized neutron beam incident upon ahead phantom is investigated using the Monte Carlo N-particles code, MCNP 4B. The phantom model used is based on the geometry of a circular cylinder on which sits an elliptical cylinder capped by half an ellipsoid representing the neck and head, both filled with tissue-equivalent material. The neutron flux and the contribution of individual absorbed dose components, as a function of depths and of radial distance from the beam axis (dose profiles) in phantom model, is presented and discussed. For the studied beam the maximum thermal neutron flux is at a depth of 2 cm and the maximum gamma dose at a depth of 4 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号