首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wiskott-Aldrich Syndrome protein (WASp) and related proteins stimulate actin filament nucleation by Arp2/3 complex. The isolated C-terminal VCA domain of WASp (containing Verprolin-like, Central and Acidic regions) is constitutively active but autoinhibited in the full-length protein. This study compared the ability of parts of VCA fused to the C terminus of glutathione S-transferase (GST) to bind actin and Arp2/3 complex in vitro and to activate actin polymerization in vitro and in cells. Fluorescence anisotropy measurements showed that GST-CA and GST-A bound Arp2/3 complex with K(d) values of 0.11 microm and 1.0 microm, respectively, whereas GST-VC displayed almost undetectable binding (K(d) > 1 mm). However, GST-VC activated actin nucleation through Arp2/3 complex in vitro, though requiring 70-fold higher concentration than GST-VCA while neither GST-CA nor GST-A activated Arp2/3 complex in vitro, though both GST-CA and GST-A inhibited Arp2/3 complex activation by WASp VCA. None of these constructs bound WASp from macrophage lysates. Both GST-VC and GST-CA induced actin accumulations when microinjected into primary human macrophages or human endothelial vein cells. However, only microinjection of GST-VC led to a significant increase of cellular polymerized actin. Additionally, endogenous Arp2/3 complex, but not WASp, colocalized with these GST-VC-induced actin accumulations. These data suggest that WASp constructs lacking the A region, previously thought to be indispensable for actin nucleation, are able to bind and activate Arp2/3 complex in vitro and in vivo.  相似文献   

2.
We purified native WASp (Wiskott-Aldrich Syndrome protein) from bovine thymus and studied its ability to stimulate actin nucleation by Arp2/3 complex. WASp alone is inactive in the presence or absence of 0.5 microM GTP-Cdc42. Phosphatidylinositol 4,5 bisphosphate (PIP(2)) micelles allowed WASp to activate actin nucleation by Arp2/3 complex, and this was further enhanced twofold by GTP-Cdc42. Filaments nucleated by Arp2/3 complex and WASp in the presence of PIP(2) and Cdc42 concentrated around lipid micelles and vesicles, providing that Cdc42 was GTP-bound and prenylated. Thus, the high concentration of WASp in neutrophils (9 microM) is dependent on interactions with both acidic lipids and GTP-Cdc42 to activate actin nucleation by Arp2/3 complex. The results also suggest that membrane binding increases the local concentrations of Cdc42 and WASp, favoring their interaction.  相似文献   

3.
A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling.  相似文献   

4.
Lamellipodia/ruffles and filopodia are protruding organelles containing short and highly branched or long and unbranched actin filaments, respectively. The microscopic morphology, dynamic development and protein signature of both lamellipodia/ruffles and filopodia have been investigated; however, little is known about the mechanisms by which cells coordinate the formation of these actin-based extensions. Here, we show that WAVE holds mDia2 and the Arp2/3 complex in a multimolecular complex. WAVE- and Arp2/3-dependent ruffling induced by EGF does not require mDia2. Conversely, the emission of mDia2-dependent filopodia correlates with its disengagement from WAVE. Consistently, the ability of EGF, Cdc42 and serum to induce mDia2-dependent formation of filopodia is increased in the absence of either the WAVE/Abi1/Nap1/PIR121 (WANP) or the Arp2/3 complex. Reintroduction of WAVE2 into WANP-complex knockdown cells markedly reduces filopodia formation independently of actin polymerization. Thus, WAVE and the Arp2/3 complex jointly orchestrate different types of actin-based plasma membrane protrusions by promoting ruffling and inhibiting mDia2-induced filopodia.  相似文献   

5.
Arp2/3 is a negative regulator of growth cone translocation   总被引:6,自引:0,他引:6  
Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.  相似文献   

6.
Wiskott-Aldrich Syndrome protein (WASp) is a key regulator of the Arp2/3 complex and the actin cytoskeleton in hematopoietic cells. WASp is capable of forming an auto-inhibited conformation, which can be disrupted by binding of Cdc42 and phosphatidylinositol 4,5-bisphosphate, leading to its activation. Stimulation of the collagen receptor on platelets and crosslinking the B-cell receptor induce tyrosine phosphorylation of WASp. Here we show that the Src family kinase Hck induces phosphorylation of WASp-Tyr(291) independently of Cdc42 and that this causes a shift in the mobility of WASp upon SDS-PAGE. A phospho-mimicking mutant, WASp-Y291E, exhibited an enhanced ability to stimulate actin polymerization in a cell-free system and when microinjected into primary macrophages induced extensive filopodium formation with greater efficiency than wild-type WASp or a Y291F mutant. We propose that phosphorylation of Tyr(291) directly regulates WASp function.  相似文献   

7.
The Yersinia outer surface protein invasin binds to β1 integrins on target cells and has been shown to trigger phagocytic uptake by macrophages. Here, we investigated the role of the actin regulator Wiskott–Aldrich syndrome protein (WASp), its effector the Arp2/3 complex and the Rho-GTPases CDC42Hs, Rac and Rho in invasin/β1 integrin-triggered phagocytosis. During uptake of invasin-coated latex beads, the α5β1 integrin, WASp and the Arp2/3 complex were recruited to the developing actin-rich phagocytic cups in primary human macrophages. Blockage of β1 integrins by specific antibodies, inhibition of Arp2/3 function by microinjection of inhibitors or the use of WASp knockout macrophages inhibited phagocytic cup formation and uptake. Furthermore, microinjection of the dominant negative GTPase mutants N17CDC42Hs, N17Rac or the Rho-specific inhibitor C3-transferase into macrophages greatly attenuated invasin-induced formation of cups. These data suggest that during invasin-triggered phagocytosis β1 integrins activate actin polymerization via CDC42Hs, its effector WASp and the Arp2/3 complex. The contribution of Rac and Rho to phagocytic cup formation also suggests a complex interplay between different Rho GTPases during phagocytosis of pathogens.  相似文献   

8.
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder originally characterized by the clinical triad eczema, thrombocytopenia, and severe immunodeficieny, with recurrent bacterial and viral infections, indicating a profound immune cell defect. Such altered immune cells include monocytes, macrophages, and dendritic cells, which were reported to display disturbed cell polarization or chemotaxis. WAS is caused by mutations in the WAS protein (WASp), which is thought to organize the actin cytoskeleton through the Arp2/3 complex. Here we show that the Arp2/3 complex is an integral part of podosomes, actin-rich adhesion structures of macrophages, and that WAS macrophages fail to organize the Arp2/3 complex into podosomes. We also demonstrate that microinjection of a C-terminal acidic stretch of WASp into normal macrophages displaces Arp2/3 from podosomes and, in combination with chemoattractant stimulation of cells, induces a phenotype resembling the polarization-defective phenotype of stimulated WAS macrophages. These findings point to an important role of the Arp2/3 complex in polarization and migration of immune cells.  相似文献   

9.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

10.
Cortactin is an actin-binding protein that is enriched within the lamellipodia of motile cells and in neuronal growth cones. Here, we report that cortactin is localized with the actin-related protein (Arp) 2/3 complex at sites of actin polymerization within the lamellipodia. Two distinct sequence motifs of cortactin contribute to its interaction with the cortical actin network: the fourth of six tandem repeats and the amino-terminal acidic region (NTA). Cortactin variants lacking either the fourth tandem repeat or the NTA failed to localize at the cell periphery. Tandem repeat four was necessary for cortactin to stably bind F-actin in vitro. The NTA region interacts directly with the Arp2/3 complex based on affinity chromatography, immunoprecipitation assays, and binding assays using purified components. Cortactin variants containing the NTA region were inefficient at promoting Arp2/3 actin nucleation activity. These data provide strong evidence that cortactin is specifically localized to sites of dynamic cortical actin assembly via simultaneous interaction with F-actin and the Arp2/3 complex. Cortactin interacts via its Src homology 3 (SH3) domain with ZO-1 and the SHANK family of postsynaptic density 95/dlg/ZO-1 homology (PDZ) domain-containing proteins, suggesting that cortactin contributes to the spatial organization of sites of actin polymerization coupled to selected cell surface transmembrane receptor complexes.  相似文献   

11.
Members of the family of WASP-family Verprolin homologous proteins (WAVEs) activate the Arp2/3 complex to induce actin polymerization. The WAVE family comprises three proteins, namely, WAVE1, WAVE2 and WAVE3. Among them, WAVE2 is crucial for activation of the Arp2/3 complex for the formation of branched actin filaments in lamellipodia. Activation of mitogen-activated protein (MAP) kinase signalling results in the phosphorylation of the WAVE family proteins; however, which of the three WAVE proteins is phosphorylated is unclear. We found that in vitro WAVE2 is directly phosphorylated by a MAP kinase, i.e. extracellular signal-regulated kinase (ERK) 2. The proline-rich region and the verprolin, cofilin and acidic (VCA) region of WAVE2 were phosphorylated. Interestingly, the phosphorylated VCA region had a higher affinity for the Arp2/3 complex. However, the phosphorylation of the VCA region resulted in reduced induction of Arp2/3-mediated actin polymerization in vitro. The role of the phosphorylation of the proline-rich region was not determined.  相似文献   

12.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

13.
Cell migration is initiated by plasma membrane protrusions, in the form of lamellipodia and filopodia. The latter rod-like projections may exert sensory functions and are found in organisms as distant in evolution as mammals and amoeba such as Dictyostelium discoideum. In mammals, lamellipodia protrusion downstream of the small GTPase Rac1 requires a multimeric protein assembly, the WAVE-complex, which activates Arp2/3-mediated actin filament nucleation and actin network assembly. A current model of filopodia formation postulates that these structures arise from a dendritic network of lamellipodial actin filaments by selective elongation and bundling. Here, we have analyzed filopodia formation in mammalian cells abrogated in expression of essential components of the lamellipodial actin polymerization machinery. Cells depleted of the WAVE-complex component Nck-associated protein 1 (Nap1), and, in consequence, of lamellipodia, exhibited normal filopodia protrusion. Likewise, the Arp2/3-complex, which is essential for lamellipodia protrusion, is dispensable for filopodia formation. Moreover, genetic disruption of nap1 or the WAVE-orthologue suppressor of cAMP receptor (scar) in Dictyostelium was also ineffective in preventing filopodia protrusion. These data suggest that the molecular mechanism of filopodia formation is conserved throughout evolution from Dictyostelium to mammals and show that lamellipodia and filopodia formation are functionally separable.  相似文献   

14.
Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.  相似文献   

15.
BACKGROUND: WASp/SCAR proteins activate the Arp2/3 complex to nucleate actin filament assembly and are thought to have important roles in endocytosis. WASp is required for efficient endocytosis of antigen receptors, N-WASp promotes actin polymerization-dependent movement of endomembrane vesicles, and Las17 (a yeast WASp homolog) is required for endocytic internalization. However, it is unknown whether movement of endosomes or other organelles requires activation of the Arp2/3 complex by members of the WASp/SCAR family. RESULTS: Fluorescence video microscopy of yeast cells expressing a GFP-tagged G protein-coupled receptor (Ste2-GFP) as an endocytic marker revealed that endosomes and the lysosome-like vacuole are highly motile. Endosome/vacuole motility required actin polymerization, as indicated by sensitivity to latrunculin A, whereas microtubules were uninvolved. Endosome/vacuole motility did not require actin cables or myosin V (a MYO2 gene product), which moves secretory vesicles and the Golgi apparatus and mediates vacuole segregation. However, endosome motility required Las17, a WASp homolog. In contrast to other processes involving Las17, endosome/vacuole motility required the WCA domain of Las17, which is necessary and sufficient to activate the Arp2/3 complex. CONCLUSIONS: Endosome/vacuole motility in vivo requires actin polymerization stimulated by the WASp homolog Las17. WASp/SCAR family members in mammalian cells may have similar functions. Defects in endosome/lysosome motility may contribute to deficits in lymphocyte or macrophage function observed in human patients lacking WASp or developmental defects in N-WASp-deficient mice.  相似文献   

16.
Toca-1 (transducer of Cdc42-dependent actin assembly) interacts with the Cdc42·N-WASP and Abi1·Rac·WAVE F-actin branching pathways that function in lamellipodia formation and cell motility. However, the potential role of Toca-1 in these processes has not been reported. Here, we show that epidermal growth factor (EGF) induces Toca-1 localization to lamellipodia, where it co-localizes with F-actin and Arp2/3 complex in A431 epidermoid carcinoma cells. EGF also induces tyrosine phosphorylation of Toca-1 and interactions with N-WASP and Abi1. Stable knockdown of Toca-1 expression by RNA interference has no effect on cell growth, EGF receptor expression, or internalization. However, Toca-1 knockdown cells display defects in EGF-induced filopodia and lamellipodial protrusions compared with control cells. Further analyses reveal a role for Toca-1 in localization of Arp2/3 and Abi1 to lamellipodia. Toca-1 knockdown cells also display a significant defect in EGF-induced motility and invasiveness. Taken together, these results implicate Toca-1 in coordinating actin assembly within filopodia and lamellipodia to promote EGF-induced cell migration and invasion.  相似文献   

17.
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.  相似文献   

18.
BACKGROUND: WASp family proteins promote actin filament assembly by activating Arp2/3 complex and are regulated spatially and temporally to assemble specialized actin structures used in diverse cellular processes. Some WASp family members are autoinhibited until bound by activating ligands; however, regulation of the budding yeast WASp homolog (Las17/Bee1) has not yet been explored. RESULTS: We isolated full-length Las17 and characterized its biochemical activities on yeast Arp2/3 complex. Purified Las17 was not autoinhibited; in this respect, it is more similar to SCAR/WAVE than to WASp proteins. Las17 was a much stronger activator of Arp2/3 complex than its carboxyl-terminal (WA) fragment. In addition, actin polymerization stimulated by Las17-Arp2/3 was much less sensitive to the inhibitory effects of profilin compared to polymerization stimulated by WA-Arp2/3. Two SH3 domain-containing binding partners of Las17, Sla1 and Bbc1, were purified and were shown to cooperate in inhibiting Las17 activity. The two SLA1 SH3 domains required for this inhibitory activity in vitro were also required in vivo, in combination with BBC1, for cell viability and normal actin organization. CONCLUSIONS: Full-length Las17 is not autoinhibited and activates Arp2/3 complex more strongly than its WA domain alone, revealing an important role for the Las17 amino terminus in Arp2/3 complex activation. Two of the SH3 domain-containing ligands of Las17, Sla1 and Bbc1, cooperate to inhibit Las17 activity in vitro and are required for a shared function in actin organization in vivo. Our results show that, like SCAR/WAVE, WASp proteins can be controlled by negative regulation through the combined actions of multiple ligands.  相似文献   

19.
Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2, accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia.  相似文献   

20.
Branched actin assembly is critical for a variety of cellular processes that underlie cell motility and invasion, including cellular protrusion formation and membrane trafficking. Activation of branched actin assembly occurs at various subcellular locations via site-specific activation of distinct WASp family proteins and the Arp2/3 complex. A key branched actin regulator that promotes cell motility and links signaling, cytoskeletal and membrane trafficking proteins is the Src kinase substrate and Arp2/3 binding protein cortactin. Due to its frequent overexpression in advanced, invasive cancers and its general role in regulating branched actin assembly at multiple cellular locations, cortactin has been the subject of intense study. Recent studies suggest that cortactin has a complex role in cellular migration and invasion, promoting both on-site actin polymerization and modulation of autocrine secretion. Diverse cellular activities may derive from the interaction of cortactin with site-specific binding partners.Key words: cortactin, migration, invasion, lamellipodia, invadopodia, cancer, actin, actin assembly, scaffold, membrane trafficking, secretion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号