首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell suspensions of Bacteroides fragilis were allowed to ferment glucose and lactate labeled with (14)C in different positions. The fermentation products, propionate and acetate, were isolated, and the distribution of radioactivity was determined. An analysis of key enzymes of possible pathways was also made. The results of the labeling experiments showed that: (i) B. fragilis ferments glucose via the Embden-Meyerhof pathway; and (ii) there was a randomization of carbons 1, 2, and 6 of glucose during conversion to propionate, which is in accordance with propionate formation via fumarate and succinate. The enzymes 6-phosphofrucktokinase (pyrophosphate-dependent), fructose-1,6-diphosphate aldolase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, and methylmalonyl-coenzyme A mutase could be demonstrated in cell extracts. Their presence supported the labeling results and suggested that propionate is formed from succinate via succinyl-, methylmalonyl-, and propionyl-coenzyme A. From the results it also is clear that CO(2) is necessary for growth because it is needed for the formation of C4 acids. There was also a randomization of carbons 1, 2, and 6 of glucose during conversion to acetate, which indicated that pyruvate kinase played a minor role in pyruvate formation from phosphoenolpyruvate. Phosphoenolpyruvate carboxykinase, oxaloacetate decarboxylase, and malic enzyme (nicotinamide adenine dinucleotide phosphate-dependent) were present in cell extracts of B. fragilis, and the results of the labeling experiments agreed with pyruvate synthesis via oxaloacetate and malate if these acids are in equilibrium with fumarate. The conversion of [2-(14)C]- and [3-(14)C]lactate to acetate was not associated with a randomization of radioactivity.  相似文献   

2.
Experiments were conducted with aged nuclear-free homogenate of sheep liver and aged mitochondria in an attempt to measure both the extent of oxidation of propionate and the distribution of label from [2-14C]propionate in the products. With nuclear-free homogenate, propionate was 44% oxidized with the accumulation of succinate, fumarate, malate and some citrate. Recovery of 14C in these intermediates and respiratory carbon dioxide was only 33%, but additional label was detected in endogenous glutamate and aspartate. With washed mitochondria 30% oxidation of metabolized propionate occurred, and proportionately more citrate and malate accumulated. Recovery of 14C in dicarboxylic acids, citrate, α-oxoglutarate, glutamate, aspartate and respiratory carbon dioxide was 91%. The specific activities of the products and the distribution of label in the carbon atoms of the dicarboxylic acids were consistent with the operation solely of the methylmalonate pathway together with limited oxidation of the succinate formed by the tricarboxylic acid cycle via pyruvate. In a final experiment with mitochondria the label consumed from [2-14C]propionate was entirely recovered in the intermediates of the tricarboxylic acid cycle, glutamate, aspartate, methylmalonate and respiratory carbon dioxide.  相似文献   

3.
Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high activities of methylmalonyl-CoA: pyruvate transacetylase, acetase kinase and reasonably high activities of NAD(P)-independent L(+)-lactate dehydrogenase NAD(P)-independent pyruvate dehydrogenase, phosphotransacetylase, acetate kinase and reasonably high activity of NAD(P)-independent L(+)-lactate dehydrogenase, fumarate reductase and succinate dehydrogenase. Cell-free extracts catalyzed the conversion of succinate to propionate in the presence of pyruvate, CoA and ATP and the oxaloacetate-dependent conversion of propionate to succinate. After growth on lactate or propionate in the presence of sulfate similar enzyme levels were found except for fumarate reductase which was considerably lower. Fermentative growth on lactate led to higher cytochrome b contents than growth with sulfate as electron acceptor.The labeling studies and the enzyme measurements demonstrate that in Desulfobulbus propionate is formed via a succinate pathway involving a transcarboxylase like in Propionibacterium. The same pathway may be used for the degradation of propionate to acetate in the presence of sulfate.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PEP phosphoenolpyruvate  相似文献   

4.
Malaise  W.J.  Ladrière  L.  Jijakli  H.  Laatikainen  R.  Niemitz  M.  Verbruggen  I.  Biesernans  M.  Willem  R. 《Molecular and cellular biochemistry》1998,189(1-2):137-144
Hepatocytes prepared from overnight fasted rats were incubated for 120 min in the presence of the dimethyl ester of [2,3-13C]succinic acid (10 mM). The identification and quantification of 13C-enriched metabolites in the incubation medium were performed by a novel computational strategy for the deconvolution of NMR spectra with multiplet structures and constraints. The generation of 13C-labelled metabolites, including succinate, fumarate, malate, lactate, alanine, aspartate and glucose accounted for about half of the initial amount of the ester present in the incubation medium. A fair correlation was observed between the experimental abundance of each 13C-labelled glucose isotopomer and the corresponding values derived from a model for the metabolism of [2,3-13C]succinate. Newly formed glucose was more efficiently labelled in the carbon C5 than C2, as well as the carbon C6 than C1, supporting the concept that D-glyceraldehyde-3-phosphate may undergo enzyme-to-enzyme channelling between glyceraldehyde-3-phosphate dehydrogenase and phosphofructoaldolase.  相似文献   

5.
Succinate synthesis from exogenous malate, alpha-ketoglutarate, oxaloacetate and L-glutamate in isolated oxygen-deprived rat heart mitochondria was studied using 1H NMR. The highest rate of succinate synthesis was observed during incubation of mitochondria with a mixture of L-glutamate and oxaloacetate. When mitochondria were incubated with [U-13C] glutamate and oxaloacetate the [U-13C] succinate/succinate and aspartate/succinate ratios were equal to 2. This suggests that the succinate produced from [U-13C] alpha-keto-glutarate formed via transamination of [U-13C] glutamate with oxaloacetate by aspartate aminotransferase exceeds twofold that synthesized via oxaloacetate reduction. It may thus be expected that GTP yield in a reaction catalyzed by the succinic thiokinase will be 2 times higher that of ATP production coupled with NADH-dependent fumarate reduction.  相似文献   

6.
Metabolism of propionate to acetate in the cockroach Periplaneta americana   总被引:2,自引:0,他引:2  
Carbon-13 NMR and radiotracer studies were used to determine the precursor to methylmalonate and to study the metabolism of propionate in the cockroach Periplaneta americana. [3,4,5-13C3]Valine labeled carbons 3, 4, and 26 of 3-methylpentacosane, indicating that valine was metabolized via propionyl-CoA to methylmalonyl-CoA and served as the methyl branch unit precursor. Potassium [2-13C]propionate labeled the odd-numbered carbons of hydrocarbons and potassium [3-13C]propionate labeled the even-numbered carbons of hydrocarbons in this insect. This labeling pattern indicates that propionate is metabolized to acetate, with carbon-2 of propionate becoming the methyl carbon of acetate and carbon-3 of propionate becoming the carboxyl carbon of acetate. In vivo studies in which products were separated by HPLC showed that [2-14C]propionate was readily metabolized to acetate. The radioactivity from sodium [1-14C]propionate was not incorporated into succinate nor into any other tricarboxylic acid cycle intermediate, indicating that propionate was not metabolized via methylmalonate to succinate. Similarly, [1-14C]propionate did not label acetate. An experiment designed to determine the subcellular localization of the enzymes involved in converting propionate to acetate showed that they were located in the mitochondrial fraction. Data from both in vivo and in vitro studies as a function of time indicated that propionate was converted directly to acetate and did not first go through tricarboxylic acid cycle intermediates. These data demonstrate a novel pathway of propionate metabolism in insects.  相似文献   

7.
Succinate formation during incubation of isolated rat heart mitochondria with exogenous precursors, malate, alpha-ketoglutarate, oxaloacetate and L-glutamate was studied in the absence of aeration. The formation of succinate, the end product of the tricarboxylic acid cycle, occurs via two pathways: through reduction of oxaloacetate or malate and via oxiation of alpha-ketoglutarate. The highest rate of succinate synthesis was observed when mitochondria were incubated with a mixture of 5 mM L-glutamate and 10 mM oxaloacetate, i.e., when both routes were used simultaneously. The [U-13C]succinate/succinate and aspartate/succinate ratios were equal to 2, when mitochondria were incubated with 5 mM [U-13C]glutamate and 10 mM oxaloacetate. Therefore, the amount of succinate formed from [13C]alpha-ketoglutarate via transamination of [13C]glutamate with oxaloacetate exceeds twice succinate production from oxialoacetate. These data suggest that GTP formation in the succinic thiokinase reaction should exceed twice the ATP yield coupled with NADH-dependent reduction of fumarate.  相似文献   

8.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   

9.
We have evaluated the use of [1,2-13C2]propionate for the analysis of propionic acid metabolism, based on the ability to distinguish between the methylcitrate and methylmalonate pathways. Studies using propionate-adapted Escherichia coli MG1655 cells were performed. Preservation of the 13C-13C-12C carbon skeleton in labeled alanine and alanine-containing peptides involved in cell wall recycling is indicative of the direct formation of pyruvate from propionate via the methylcitrate cycle, the enzymes of which have recently been demonstrated in E. coli. Additionally, formation of 13C-labeled formate from pyruvate by the action of pyruvate-formate lyase is also consistent with the labeling of pyruvate C-1. Carboxylation of the labeled pyruvate leads to formation of [1,2-13C2]oxaloacetate and to multiply labeled glutamate and succinate isotopomers, also consistent with the flux through the methylcitrate pathway, followed by the tricarboxylic acid (TCA) cycle. Additional labeling of TCA intermediates arises due to the formation of [1-13C]acetyl coenzyme A from the labeled pyruvate, formed via pyruvate-formate lyase. Labeling patterns in trehalose and glycine are also interpreted in terms of the above pathways. The information derived from the [1, 2-13C2]propionate label is contrasted with information which can be derived from singly or triply labeled propionate and shown to be more useful for distinguishing the different propionate utilization pathways via nuclear magnetic resonance analysis.  相似文献   

10.
A detailed study of the glucose fermentation pathway and the modulation of catabolic oxidoreductase activities by energy sources (i.e., glucose versus lactate or fumarate) in Propionispira arboris was performed. 14C radiotracer data show the CO2 produced from pyruvate oxidation comes exclusively from the C-3 and C-4 positions of glucose. Significant specific activities of glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase were detected, which substantiates the utilization of the Embden-Meyerhoff-Parnas path for glucose metabolism. The methylmalonyl coenzyme A pathway for pyruvate reduction to propionate was established by detection of significant activities (greater than 16 nmol/min per mg of protein) of methylmalonyl coenzyme A transcarboxylase, malate dehydrogenase, and fumarate reductase in cell-free extracts and by 13C nuclear magnetic resonance spectroscopic demonstration of randomization of label from [2-13C]pyruvate into positions 2 and 3 of propionate. The specific activity of pyruvate-ferredoxin oxidoreductase, malate dehydrogenase, fumarate reductase, and transcarboxylase varied significantly in cells grown on different energy sources. D-Lactate dehydrogenase (non-NADH linked) was present in cells of P. arboris grown on lactate but not in cells grown on glucose or fumarate. These results indicate that growth substrates regulate synthesis of enzymes specific for the methylmalonyl coenzyme A path and initial substrate transformation.  相似文献   

11.
Mitochondria were incubated with L[5-13C]glutamic acid and the distribution of the label between the two carboxyl carbon atoms of the L-aspartic acid formed was determined by 13C NMR. The reaction sequence leading from L-glutamic acid to L-aspartic acid spans the tricarboxylic acid cycle reactions involving the two symmetrical intermediates succinate and fumarate. The C2 symmetry of these intermediates in principle permits a discrimination of the mechanism of their transfer between their enzyme sites of production and utilization. A direct transfer of metabolite from site to site by translation alone predicts an unequal distribution of 13C between the C1 and C4 of aspartate, whereas molecular rotation during transfer allows for a scrambling of the original C5 label. Under several conditions of different glutamate concentrations and solvent osmotic pressures, equal labeling in the C1 and C4 carbons of aspartate is observed. This observation is inconsistent with a transfer mechanism restricting molecular rotation for both intermediates but is compatible with both a random diffusion and a direct transfer mechanism provided the latter allows molecular rotation.  相似文献   

12.
Some aspects of tricarboxylic acid-cycle activity during differentiation and aging in Dictyostelium discoideum were examined. The concentrations of glutamate, aspartate, alanine, citrate, 2-oxoglutarate, succinate, fumarate, malate, oxaloacetate, pyruvate and acetyl-CoA were determined at four stages over the course of differentiation. The rate of O2 utilization was also determined over differentiation. In addition, experiments are described in which the specific radioactivities of citrate, 2-oxoglutarate, succinate, fumarate and malate were determined during a 30 min labelling of cells from the preculmination stage of development with [14C]glutamate, [14C]aspartate or [14C]alanine. A similar experiment was also performed with cells from the aggregation stage of development using [14C]glutamate.  相似文献   

13.
1. When [2-(14)C]pyruvate is injected into rats the C3-position of liver glutamate becomes more heavily labelled than the C2-position, thus establishing that oxaloacetate and fumarate are not in equilibrium in rat liver mitochondria in vivo. The amount of disequilibrium was shown to be simply related to the value that the C3-label/C2-label ratio would have were no label recycled. This ratio, z, was calculated for post-absorptive rats in environmental temperatures of 20 degrees and 30 degrees C from determinations of the distribution of label within glutamate 1, 3 and 10min after intravenous injection of [2-(14)C]pyruvate. The values of z (best estimate and range) were 1.65 (1.60-1.69) in rats at 20 degrees C and 2.43 (2.23-2.63) in rats at 30 degrees C. These values of z imply the following rates of interconversion in mitochondria of fumarate and oxaloacetate (in terms of the oxaloacetate-->citrate flux, R) in rats at 20 degrees C: [Formula: see text] and in rats at 30 degrees C: [Formula: see text] 2. The kinetic parameters of malate dehydrogenase and fumarate hydratase and the intramitochondrial concentrations of NAD(+) and NADH under (as far as could be judged) conditions in vivo were collated. From them and the best estimates of R now available were calculated the rates of interconversion of fumarate, malate and oxaloacetate required to give the found values of z. These rates showed that the fumarate hydratase reaction was nearly in equilibrium, but that the malate dehydrogenase reaction was considerably out of equilibrium. The calculations also led to the following conclusions. 3. In livers of rats at 20 degrees and 30 degrees C mitochondrial malate concentrations were respectively about 5 and 1.5 times mean cellular concentrations. 4. Mitochondrial oxaloacetate concentrations were less than 0.2 of the mean cellular concentrations. They were also only 0.65 and 0.55 of the equilibrium concentrations for the malate dehydrogenase reaction in rats at 20 degrees and 30 degrees C respectively. 5. Malate dehydrogenase activity was low because of the very low oxaloacetate concentrations in the mitochondria and the very small fraction of the enzyme complexed with NAD(+), i.e. in each direction one substrate concentration was very sub-optimal.  相似文献   

14.
1. Metabolism of propionate by sheep-liver mitochondria was stimulated catalytically by alpha-oxoglutarate, pyruvate, citrate and isocitrate. Succinate was stimulatory at higher concentrations, but fumarate and malate were inert. These effects were all independent of the presence of ATP, succinate being less effective when ATP was present. 2. Compared with the metabolism of added succinate, propionate metabolism was resistant to malonate inhibition, but only in the presence of added ATP. In the absence of ATP propionate metabolism was more sensitive to malonate inhibition than was the metabolism of succinate. 3. In the absence of malonate, and at malonate concentrations in the range 5-100mm, alpha-oxoglutarate increased the rate of fixation of [2-(14)C]propionate by about 50% without altering the nature of the fixation products. 4. Metabolism of [1-(14)C]-propionate in the presence of 50mm-malonate was accompanied by accumulation of about half the propionate consumed as succinate. When alpha-oxoglutarate was present in addition part of the alpha-oxoglutarate was metabolized and the rate of propionate consumption was increased. The total succinate that accumulated corresponded to the alpha-oxoglutarate consumed plus about half the propionate metabolized. 5. When [1-(14)C]propionate was metabolized in the absence of malonate about 70% of the generated succinate was oxidized to fumarate or beyond. The addition of malonate decreased the rate of propionate metabolism, and decreased to about half the fraction of generated succinate oxidized. 6. When propionate and 10mm-succinate were metabolized together, the total oxidation of succinate was greater than that with 10mm-succinate alone. The increment in succinate oxidation corresponded to about half the propionate metabolized in the presence or absence of malonate or ATP. 7. It is suggested that the metabolism of propionate is specifically limited by the rate of oxidation of the generated succinate, and that the succinate oxidase concerned is distinct from that responsible for the oxidation of added succinate. 8. The results are discussed in terms of the mode of action of certain stimulants and inhibitors of propionate metabolism. It is suggested that many of these act by stimulation or inhibition of the specific succinate oxidase that limits propionate metabolism.  相似文献   

15.
Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.   总被引:1,自引:0,他引:1  
The utilization of pyruvate and acetate by Saccharomyces cerevisiae was examined using 13C and 1H NMR methodology in intact wild-type yeast cells and mutant yeast cells lacking Krebs tricarboxylic acid (TCA) cycle enzymes. These mutant cells lacked either mitochondrial (NAD) isocitrate dehydrogenase (NAD-ICDH1),alpha-ketoglutarate dehydrogenase complex (alpha KGDC), or mitochondrial malate dehydrogenase (MDH1). These mutant strains have the common phenotype of being unable to grow on acetate. [3-13C]-Pyruvate was utilized efficiently by wild-type yeast with the major intermediates being [13C]glutamate, [13C]acetate, and [13C]alanine. Deletion of any one of these Krebs TCA cycle enzymes changed the metabolic pattern such that the major synthetic product was [13C]galactose instead of [13C]glutamate, with some formation of [13C]acetate and [13C]alanine. The fact that glutamate formation did not occur readily in these mutants despite the metabolic capacity to synthesize glutamate from pyruvate is difficult to explain. We discuss the possibility that these data support the metabolon hypothesis of Krebs TCA cycle enzyme organization.  相似文献   

16.
It has been demonstrated that perfusion of myocardium with glutamic acid or tricarboxylic acid cycle intermediates during hypoxia or ischemia, improves cardiac function, increases ATP levels, and stimulates succinate production. In this study isolated adult rat heart cells were used to investigate the mechanism of anaerobic succinate formation and examine beneficial effects attributed to ATP generated by this pathway. Myocytes incubated for 60 min under hypoxic conditions showed a slight loss of ATP from an initial value of 21 +/- 1 nmol/mg protein, a decline of CP from 42 to 17 nmol/mg protein and a fourfold increase in lactic acid production to 1.8 +/- 0.2 mumol/mg protein/h. These metabolite contents were not altered by the addition of malate and 2-oxoglutarate to the incubation medium nor were differences in cell viability observed; however, succinate release was substantially accelerated to 241 +/- 53 nmol/mg protein. Incubation of cells with [U-14C]malate or [2-U-14C]oxoglutarate indicates that succinate is formed directly from malate but not from 2-oxoglutarate. Moreover, anaerobic succinate formation was rotenone sensitive. We conclude that malate reduction to succinate occurs via the reverse action of succinate dehydrogenase in a coupled reaction where NADH is oxidized (and FAD reduced) and ADP is phosphorylated. Furthermore, by transaminating with aspartate to produce oxaloacetate, 2-oxoglutarate stimulates cytosolic malic dehydrogenase activity, whereby malate is formed and NADH is oxidized. In the form of malate, reducing equivalents and substrate are transported into the mitochondria where they are utilized for succinate synthesis.  相似文献   

17.
This study used in vitro 13C NMR spectroscopy to directly examine bidirectional reactions of the Wood-Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 micromol min(-1) g(-1) (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood-Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

18.
Transport and metabolism of dicarboxylates may be important in the glial-neuronal metabolic interplay. Further, exogenous dicarboxylates have been suggested as cerebral energy substrates. After intrastriatal injection of [(14) C]fumarate or [(14) C]malate, glutamine attained a specific activity 4.1 and 2.6 times higher than that of glutamate, respectively, indicating predominantly glial uptake of these four-carbon dicarboxylates. In contrast, the three-carbon dicarboxylate [(14) C]malonate gave a specific activity in glutamate which was approximately five times higher than that of glutamine, indicating neuronal uptake of malonate. Therefore, neurones and glia take up different types of dicarboxylates, probably by different transport mechanisms. Labelling of alanine from [(14) C]fumarate and [(14) C]malate demonstrated extensive malate decarboxylation, presumably in glia. Intravenous injection of 75 micromol [U-(13) C]fumarate rapidly led to high concentrations of [U-(13) C]fumarate and [U-(13) C]malate in serum, but neither substrate labelled cerebral metabolites as determined by (13) C NMR spectroscopy. Only after conversion of [U-(13) C]fumarate into serum glucose was there (13) C-labelling of cerebral metabolites, and only at <10% of that obtained with 75 micromol [3-(13) C]lactate or [2-(13) C]acetate. These findings suggest a very low transport capacity for four-carbon dicarboxylates across the blood-brain barrier and rule out a role for exogenous fumarate as a cerebral energy substrate.  相似文献   

19.
High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia.  相似文献   

20.
Metabolism of 13C labeled substrates viz. glucose and pyruvate in S. cerevisiae has been studied by 13C Nuclear Magnetic Resonance Spectroscopy. C3-Pyruvate, alanine and lactate, and C2-acetate are produced from [1-13C]glucose. The pyruvate, entering TCA cycle, leads to preferential labeling of C2-glutamate. [2-13C]Glucose results in labeling of C2-pyruvate, alanine and lactate. Some C3-pyruvate is also produced, indicating the routing of the label from glucose through pentose phosphate pathway (PPP). In TCA cycle the C2-pyruvate preferentially labels the C3-glutamate. The NMR spectra, obtained with [2-13C]pyruvate as substrate, confirm the above observations. These results suggest that the intermediates of TCA cycle are transferred from one enzyme active site to another in a manner that allows only restricted rotation of the intermediates. That is, the intermediates are partially channeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号