首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In human diploid cell strains, the substitution of galactose for glucose as the sole hexose in the medium had no measurable effect on the specific activity of the cell protein for any of the three enzymes of the Leloir pathway. These enzymes are galactokinase, α-D-galactose-1-phosphate:UDP glucose uridylyl transferase and UDP galactose 4-epimerase. A cell strain from a patient with galactosemia had no detectable activity for the transferase. The substitution of galactose for glucose in the medium of these cells (which has been shown to cause the cells to accumulate galactose-1-phosphate) also failed to affect cellular activity for the three enzymes. Similarly, the three activities failed to respond to the substitution of galactose for glucose in cultures of a rat hepatoma line. Cells of this line have been shown by others to perform a number of the tissue-specific functions of liver. The failure of galactose to stimulate increased cellular activity for the three enzymes represents a striking difference between the behavior of these enzymes in human diploid cell strains and their behavior in E. coli.  相似文献   

2.
1. Crude enzyme preparations from Hymenolepis diminuta contained galactokinase, galactose 1-phosphate uridyl transferase and UDPgalactose 4-epimerase activity, although their specific activities were low. 2. Galactose 1-phosphate non-competitively inhibited galactose phosphorylation. This inhibition, together with the low specific activities of the enzymes in the pathway of galactose utilization, probably accounts for the inadequacy of galactose as a main nutritive carbohydrate for development of the worm.  相似文献   

3.
Stock cultures of Streptococcus thermophilus are essentially galactose negative (Gal). Although both galactose 1-phosphate uridyl transferase and uridine-5-diphospho-glucose 4-epimerase are present, suggesting that the genes for the Leloir pathway exist, cells cannot induce high levels of galactokinase. Therefore, galactose is largely excreted when cultures are grown on lactose, and most strains cannot be readily adapted to grow on free galactose. Gal cultures were grown in a chemostat under lactose limitation in which high concentrations of residual galactose were present. Under this selection pressure, Gal organisms eventually took over the culture with all four strains examined. Gal cells had induced galactokinase, and three of the four strains grew on free galactose with doubling times of 40 to 50 min. When Gal organisms were grown on lactose in batch culture, the galactose moiety was only partially utilized while lactose was still present. As lactose was exhausted, and catabolite repression was lifted, the Leloir pathway enzymes (especially galactokinase) were induced and the residual galactose fermented. Neither phospho-beta-galactosidase activity nor the enzymes of the d-tagatose 6-phosphate pathway were detected in S. thermophilus. In contrast to Streptococcus cremoris and Streptococcus lactis, fermentation was homolactic with galactose in batch cultures and with lactose limitation in the chemostat. When mixed Gal-Gal cultures were repeatedly transferred in milk, the Gal cells became the dominant cell type. The Gal phenotype of stock cultures probably reflects their prolonged maintenance in milk.  相似文献   

4.
Erythrocytic galactokinase and/or galactose-1-phosphate uridyl transferase activity were low in many species of marsupials. However, cataract formation was observed only in pouch-young members of these species when reared on cow's milk. The galactose tolerance of young kangaroos was found to be greatly impaired, but improved rapidly and markedly at the stage of which the definitive structure of the ruminant type of stomach as in adults is formed. The combination of high absorption of galactose and low levels of galactokinase and/or transferase thus appears to determine the predisposition of pouch-young marsupials to galactose cataractogenesis.  相似文献   

5.
It was established earlier that the maintenance of rats on a galactose-rich diet induced in rat liver a sequental induction of enzymes, converting galactose to glucose (galactokinase, galactoso-1-phosphaturidytransferase and uridyndiphosphogalactose-4-epimerase); this was followed by the repression of these enzymes. Against the background of the enzyme repression, the continuation of galactose treatment leads to the development of galactosemia symptoms; cataracts, liver lesions growth retardation. Animals with the increased susceptibility to galactose were found in population of Wistar rats; in these animals rapidly developing enzyme induction is followed by sharp repression of enzymes of the galactose metabolism and in them cataracts appear 17-19 days after the start of feeding a galactose-rich diet. A part of the population is resistant to the galactosemic effect of galactose and in these animals cataracts develope only 40-44 days after the beginning of the galactose feeding. By inbreeding of individuals extremely susceptible to galactose and those resistant to it, new substrains of rats were obtained. It is found that in the rats of the galactose-susceptible substrain a number of galactosemic features develope spontaneously and that these features are inheritable. Thus, 85% of the animals of the age of 2.5-6 months have cataract, lens opacities and other lens impairments. In the galactose-resistant substrain no cataracts or lens opacities develope and only slight changes of the lens are observed in 15% of the animals. In the susceptible substrain other features characteristic of galactosemia occur: an increase in the size of thymus, spleen and liver. It is established that in 3.5-5 month old rats of the galactose-susceptible substrain the galactoso-1 phosphaturidyltransferase activity in blood hemolysates is 15 times lower than in rats of galactose-resistant substrain, and in liver the activity of this enzyme is 1.4 times lower. The activity of liver galactokinase and uridyldiphosphogalactose-4-epimerase is slightly higher in rats of galactose-susceptible substrain than in galactose-resistant 1.  相似文献   

6.
S Rogers  S Kirsch  S Segal 《Life sciences》1979,24(23):2159-2167
This study compares the activity of galactokinase, galactose-1-phosphate uridyltransferase, and UDPgalactose-4-epimerase, the important enzymes in the pathway of conversion of galactose to glucose in red cells and liver of five inbred strains of mice. In the red cells, galactokinase varied over a four-fold range of activity while the other enzymes varied about two-fold. The activity of each of the enzymes varied independently of the other so that red cells of each strain had a unique pattern for the three enzymes. The red cell activity pattern was not reflected in liver tissue which showed little interstrain variation for each of the three enzymes. The ratio of liver galactokinase to uridyltransferase and epimerase was very similar in all five strains. Oxidation in vivo of 14C galactose to 14CO2 was examined in the two strains of mice with the widest divergence of red cell galactokinase activity and no difference was found in this parameter measuring the physiological disposition of the sugar. The wide variation of the red cell enzyme activity appears to have little metabolic consequence for the animal, the oxidation of the sugar reflecting the relative constancy of the liver enzyme activity.  相似文献   

7.
The activities of various glycosidases in homogenates of the small intestinal mucosa of two adult and 18 suckling tammar wallabies (M. eugenii) aged from 6 to 50 weeks were investigated. Lactase (beta-D-galactosidase), beta-N-acetylglucosaminidase, alpha-L-fucosidase and neuraminidase activities were high during the first 34 weeks post partum and then declined to very low levels. Maltase, isomaltase, sucrase and trehalase activities were very low or absent during the first 34 weeks, and then increased. The lactase activity was unusual in being greater in the distal than the middle or proximal thirds of the intestine, and in its low pH optimum (pH 4.6), inhibition by p-chloromercuribenzene sulfonate but not by Tris, and lack of cellobiase activity. These properties are those of a lysosomal acid beta-galactosidase rather than of a brush border neutral lactase. The maltase activity had the characteristics of a lysosomal acid alpha-glucosidase early in lactation and of a brush border neutral maltase in adult animals. The significance of these findings is discussed in relation to changes in dietary carbohydrates during weaning and to the mode of digestion of milk carbohydrates by the pouch young.  相似文献   

8.
It has been found that saprophytic strains of mycobacteria can utilize D-galactose via the Leloir pathway which involves galactokinase, galactose-1-phosphate uridyl transferase and UDP-galactose-4-epimerase. The resulted glucose-1-phosphate is further converted by phosphoglucomutase to glucose-6-phosphate and the latter catabolized in glycolitic cycle to pyruvate. The particular enzymes of the galactose pathway have been fully separated by chromatography on a DEAE-cellulose column and some of them partially characterized.  相似文献   

9.
The sequential enzyme assay as previously described has been used to study various effects on the three enzymes in human red cells involved in the phosphorylation of galactose: galactokinase, galactose-1-phosphate uridyl transferase and uridine diphospho-galactose-4-epimerase.
  • 1 Enzyme activities in undiluted lysates appear to reflect the respective activities in whole cells.
  • 2 Added extracellular Gal-1-P, G-1-P, UDPGal and UPDG do not affect enzyme activities in whole cells.
  • 3 The kinase and transferase enzymes do not appear to be associated with the membrane fraction of the red cells.
  • 4 Galactokinase activity is inhibited by G-6-P and Gal-1-P, but not by glucose, G-1-P, UDPG, UDPGal, UTP or NAD+. It is inhibited by ATP and ADP in high concentration.
  • 5 Galactose-1-phosphate uridyl transferase activity is inhibited by G-1-P, G-6-P, UDPG, UDPGal, ATP, and ADP. It is not affected by UTP, NAD+, or galactose.
  • 6 Uridine diphospho-galactose-4-epimerase activity is inhibited by UDPG, ATP, ADP, UTP and NADH. It is stimulated by NAD+ and possibly by Gal-1-P. It is unaffected by G-1-P, G-6-P.
  • 7 The rates of the three reactions decrease with decreasing temperature. The activities of transferase and epimerase are inactivated at the same rate, the kinase activity is inactivated more slowly.
  • 8 Dilution experiments indicate the presence in lysates of a pool of UDPG (or, possibly UDPGal) which regulates the activities transferase and the epimerase enzymes.
  • 9 Results of dilution experiments suggest that the radioactive product of the transferase enzyme is different from commercially available UDPGal-u-14C.
  • 10 ATP, UTP and UDPG interact with some substance(s) in the red cell lysate to cause a time dependent inactivation of the epimerase. These interactions are the result of glucose metabolism.
  相似文献   

10.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

11.
Summary The kinetic characteristics of galactose-1-phosphate uridyltransferase and galactokinase in cultivated fibroblasts and amniotic fluid cells were investigated. The K m values of galactokinase for galactose at 2.0 mM ATP are 0.34 mM in amniotic fluid cells and 0.48 mM in fibroblasts. The K m values for ATP at 0.5 mM galactose are 1.25 mM and 2.10 mM.Transferase and galactokinase activities and protein content increase logarithmically during the growth of cultivated cells. The specific activity of both enzymes also increases and reaches a maximum level 10–15 days after subculture. The specific activity of transferase increases faster than that of galactokinase in the case of amniotic fluid cells. In the case of fibroblasts the specific activity of galactokinase increases faster than that of transferase.  相似文献   

12.
Milk was collected at various stages of lactation from a group of tammar wallabies, M. eugenii, in which parturition had been synchronized. The milk carbohydrate was determined by a phenol-sulfuric acid method which had been modified to give equal colour yields for galactose and glucose. The mean carbohydrate content increased gradually during the first 6 months of lactation to a peak of 13 g hexose/100 ml of milk, but then fell rapidly to much lower values, over the following 2 months. Throughouth lactation, galactose was the predominant monosaccharide constituent of acid hydrolysates of the milk carbohydrate. Glucose, glucosamine, galactosamine and sialic acid were the only other monosaccharides present. Qualitative changes were investigated by gel filtration and thin-layer chromatography. During the first 6 months post partum the milk carbohydrate was composed of a variety of oligosaccharides including lactose, but from 8 months onwards it consisted mainly of free monosaccharides. Between 6 and 8 months an intermediate pattern was observed, i.e. a mixture of lower oligosaccharides and free monosaccharides. In two animals which suckled both a new-born pouch young and a young at foot, the mammary gland supplying the new-born secreted milk which was rich in oligosaccharides, whereas that supplying the young at foot produced milk in which the carbohydrates were mainly free monosaccharides, and which had a much lower carbohydrate content.  相似文献   

13.
The galactose operon encoding a repressor and genes for the Leloir pathway for galactose metabolism (galactokinase, galactose-1-phosphate-uridyl transferase and UDP glucose-4-epimerase) was located adjacent to the multiple sugar metabolism (msm) operon on the chromosome of Streptococcus mutans Ingbritt (serotype c) and the complete nucleotide sequence of this 5-kilobase region was determined. The Leloir pathway was induced by the presence of galactose in the growth medium or following the release of intracellular galactose after uptake and cleavage of -galactosides by the multiple sugar metabolism system. Analysis of the mechanism of galactose transport confirmed the absence of a galactose-specific phosphotransferase system and suggested the presence of an inducible galactose permease. Evidence is presented that galactose transport is independent of the proton motive force and may be ATP-dependent.  相似文献   

14.
Hindlimb musculoskeletal anatomy and steady speed over ground hopping mechanics were compared in two species of macropod marsupials, tammar wallabies and yellow-footed rock wallabies (YFRW). These two species are relatively closely related and are of similar size and general body plan, yet they inhabit different environments with presumably different musculoskeletal demands. Tammar wallabies live in relatively flat, open habitat whereas yellow-footed rock wallabies inhabit steep cliff faces. The goal of this study was to explore musculoskeletal differences between tammar wallabies and yellow-footed rock wallabies and determine how these differences influence each species' hopping mechanics. We found the cross-sectional area of the combined ankle extensor tendons of yellow-footed rock wallabies was 13% greater than that of tammar wallabies. Both species experienced similar ankle joint moments during steady-speed hopping, however due to a lower mechanical advantage at this joint, tammar wallabies produced 26% more muscle force. Thus, during moderate speed hopping, yellow-footed rock wallabies operated with 38% higher tendon safety factors, while tammar wallabies were able to store 73% more elastic strain energy (2.18 J per leg vs. 1.26 J in YFRW). This likely reflects the differing demands of the environments inhabited by these two species, where selection for non-steady locomotor performance in rocky terrain likely requires trade-offs in locomotor economy.  相似文献   

15.
Liver UDPglucose in early chick-enbryo has, by the 19th day of incubation, reached levels existing in young hatched (White Leghorn) chicks. In developing ASH/TO mouse liver, the dehydrogenase is low, but increases sharply at late foetal and weaning stages; adult activity is greater in females than males. The UDPglucuronic acid content of embryo liver from at least 12 days resembles that of adult chicken; in mouse liver it rises over birth and infancy. These differences in relative rates of development of enzyme and nucleotide in the 2 species can explain why overall glucuronidation by liver appears in chick rapidly after hatching, but in mouse only gradually during infancy. UDPglucose dehydrogenase increases in embryo liver, probably by induction, 2-3-fold during culture with phenobarbital and some 5-fold when exposed to the drug in ovo. Phenobarbital treatment also increases the enzyme in late foetal and adult mice, abolishing the sex difference. Differences between induction of UDPglucose dehydrogenase and UDPglucuronyl transferase during development, culture and phenobarbital treatment indicate that control mechanism for these two enzymes are not directly linked.  相似文献   

16.
The complete nucleotide sequences of the genes encoding aldose 1-epimerase (mutarotase) (galM) and UDPglucose 4-epimerase (galE) and flanking regions of Streptococcus thermophilus have been determined. Both genes are located immediately upstream of the S. thermophilus lac operon. To facilitate the isolation of galE, a special polymerase chain reaction-based technique was used to amplify the region upstream of galM prior to cloning. The galM protein was homologous to the mutarotase of Acinetobacter calcoaceticus, whereas the galE protein was homologous to UDPglucose 4-epimerase of Escherichia coli and Streptomyces lividans. The amino acid sequences of galM and galE proteins also showed significant similarity with the carboxy-terminal and amino-terminal domains, respectively, of UDPglucose 4-epimerase from Kluyveromyces lactis and Saccharomyces cerevisiae, suggesting that the yeast enzymes contain an additional, yet unidentified (mutarotase) activity. In accordance with the open reading frames of the structural genes, galM and galE were expressed as polypeptides with apparent molecular masses of 39 and 37 kilodaltons, respectively. Significant activities of mutarotase and UDPglucose 4-epimerase were detected in lysates of E. coli cells containing plasmids encoding galM and galE. Expression of galE in E. coli was increased 300-fold when the gene was placed downstream of the tac promoter. The gene order for the gal-lac gene cluster of S. thermophilus is galE-galM-lacS-lacZ. The flanking regions of these genes were searched for consensus promoter sequences and further characterized by primer extension analysis. Analysis of mRNA levels for the gal and lac genes in S. thermophilus showed a strong reduction upon growth in medium containing glucose instead of lactose. The activities of the lac (lactose transport and beta-galactosidase) and gal (UDPglucose 4-epimerase) proteins of lactose- and glucose-grown S. thermophilus cells matched the mRNA levels.  相似文献   

17.
HeLa cell extracts contain significant amounts of terminal uridylyl transferase (TUTase) activity. In a template-independent reaction with labeled UTP, these enzymes are capable of modifying a broad spectrum of cellular RNA molecules in vitro . However, fractionation of cell extracts by gel filtration clearly separated two independent activities. In addition to a non-specific enzyme, an additional terminal uridylyl transferase has been identified that is highly specific for cellular and in vitro synthesized U6 small nuclear RNA (snRNA) molecules. This novel TUTase enzyme was also able to select as an efficient substrate U6 snRNA species from higher eucaryotes. In contrast, no labeling was detectable with purified fission yeast RNA. Using synthetic RNAs containing different amounts of transcribed 3'-end UMP residues, high resolution gel electrophoresis revealed that U6 snRNA species with three terminal U nucleotides served as the optimal substrate for the transferase reaction. The 3'-end modification of the optimal synthetic substrate was identical to that observed with endogenous U6 snRNA isolated from HeLa cells. Therefore, we conclude that the specific addition of UMP residues to 3'-recessed U6 snRNA molecules reflects a recycling process, ensuring the functional regeneration for pre-mRNA splicing of this snRNA.  相似文献   

18.
To study the genetic expression and regulation of galactose-metabolizing enzymes, we mutagenized the mouse liver H2.35 cell line and selected for cell clones resistant to the toxic galactose analog, 2-deoxy-D-galactose (2-DOG). One cloned line, designated H12.10, was stably resistant to high levels of 2-DOG and was completely deficient in galactokinase activity. Galactokinase activity and growth sensitivity to 2-DOG could be restored by transfecting H12.10 cells with a plasmid containing the Escherichia coli galactokinase (galK) gene fused to a eucaryotic promoter; thus, the 2-DOG selection could be directed against transfected recombinant constructs in a liver cell line. We also found that H2.35 cells could not utilize galactose as a primary carbon source because of a deficiency in galactose-1-phosphate uridyltransferase; a variant line of H2.35 cells selected in galactose medium expressed higher levels of uridyltransferase activity. Finally, we found that in all mammalian cell lines tested, galactokinase expression was the same whether the medium contained glucose, galactose, or both sugars. These studies demonstrate differences between mammalian cells and yeast cells in the regulation of gal enzymes, and they define different schemes for obtaining altered expression of genes in the galactose metabolic pathway. The isogenic liver cell lines described here can also serve as model systems for studying galactosemias, which are inherited disorders of galactose metabolism in humans.  相似文献   

19.
Purification and characterization of human erythrocyte uridylyl transferase   总被引:1,自引:0,他引:1  
A new method for the purification of human erythrocyte uridylyl transferase (UDPglucose: alpha-D-galactose-1-phosphate uridylyltransferase EC 2.7.7.12) is described. It consists of a hydrophobic purification step associated with hydroxyapatite chromatography and provided for the first time a purification of more than 45 000-fold with a high activity (15 I.U/mg) and a yield of 32%. We show that the enzyme is a dimer and has a molecular weight of 88 000. It can be resolved into three bands by isoelectric focusing with an apparent pI between 5.0 and 5.4. It could be shown by steady-state initial rate measurements that the interconversion of the two substrates of human transferase (Gal-1-P and UDP-glucose) follows ping-pong bi-bi kinetics, with Km values of 0.2 and 0.065 mM, respectively.  相似文献   

20.
Microsatellites were identified from three fully sequenced Y chromosome‐specific bacterial artificial chromosome clones from the tammar wallaby, Macropus eugenii. Ten microsatellites were genotyped in male tammar wallabies. Four loci were polymorphic with between two and six alleles per locus. Eleven different haplotypes were identified from 22 male tammar wallabies. No amplifications were obtained from female samples. Each microsatellite was also shown to amplify reliably in at least one other macropod species. These markers may therefore prove useful as some of the first male‐specific genetic markers for marsupials, with potential application to studies of male‐biased dispersal and mating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号