首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The orphan nuclear receptor TR2 functions as a constitutive activator for the endogenous retinoic acid receptor beta2 (RAR(beta2)) gene expression in P19 embryonal carcinoma cells and for reporters driven by the RAR(beta2) promoter in COS-1 cells. The activation of RAR(beta2) by TR2 is mediated by the direct repeat-5 (DR5) element located in the RAR(beta2) promoter. Furthermore, cAMP exerts an enhancing effect on the activation of RAR(beta2) by TR2, which is mediated by the cAMP response element located in the 5'-flanking region of the DR5. The constitutive activation function-1 (AF-1) of TR2 is mapped to amino acid residues 10-30 in its N-terminal A segment. A direct molecular interaction occurs between CREMtau and TR2, detected by co-immunoprecipitation, which is mediated by the N-terminal AB segment of TR2. In gel mobility shift assays, TR2 competes with P19 nuclear factor binding to the RAR(beta2) promoter, and TR2 and CREMtau bind simultaneously to this DNA fragment. The role of TR2 in the early events of RA signaling process is discussed.  相似文献   

5.
6.
7.
Antagonism between retinoic acid receptors.   总被引:11,自引:9,他引:2       下载免费PDF全文
  相似文献   

8.
9.
10.
11.
P19 embryonal carcinoma (EC) cells differentiate when treated with retinoic acid (RA). The P19 EC-derived mutant cell line RAC65 is resistant to the differentiation-inducing activity of RA. We show that these cells express a truncated retinoic acid receptor alpha(mRAR alpha-RAC65), probably due to the integration of a transposon-like element in the RAR alpha gene. This receptor lacks 71 C-terminal amino acids and terminates in the ligand-binding domain. In CAT assays in RAC65 cells, mRAR alpha-RAC65 fails to trans-activate the RAR beta promoter, which contains a RA-response element. In wild-type P19 EC cells mRAR alpha-RAC65 functions as a dominant-negative repressor of RA-induced RAR beta activation. Gel retardation assays demonstrate that mRAR alpha-RAC65 is still able to bind to the RA-response element of the RAR beta promoter, indicating that competition with functional RARs for the same binding site leads to the observed dominant-negative effect. In addition, in two RAC65 clones in which wild-type hRAR alpha was stably transfected RA-sensitivity was restored and in one RAR beta expression could be induced by RA. Taken together, these data show that the primary cause of RA-resistance of RAC65 cells is the expression of a defective RAR alpha, which prevents the trans-activation of RA-responsive genes and results in a loss of the ability to differentiate.  相似文献   

12.
13.
Retinoic acid regulation of one member of the human class I alcohol dehydrogenase (ADH) gene family was demonstrated, suggesting that the retinol dehydrogenase function of ADH may play a regulatory role in the biosynthetic pathway for retinoic acid. Promoter activity of human ADH3, but not ADH1 or ADH2, was shown to be activated by retinoic acid in transient transfection assays of Hep3B human hepatoma cells. Deletion mapping experiments identified a region in the ADH3 promoter located between -328 and -272 bp which confers retinoic acid activation. This region was also demonstrated to confer retinoic acid responsiveness on the ADH1 and ADH2 genes in heterologous promoter fusions. Within a 34-bp stretch, the ADH3 retinoic acid response element (RARE) contains two TGACC motifs and one TGAAC motif, both of which exist in RAREs controlling other genes. A block mutation of the TGACC sequence located at -289 to -285 bp eliminated the retinoic acid response. As assayed by gel shift DNA binding studies, the RARE region (-328 to -272 bp) of ADH3 bound the human retinoic acid receptor beta (RAR beta) and was competed for by DNA containing a RARE present in the gene encoding RAR beta. Since ADH catalyzes the conversion of retinol to retinal, which can be further converted to retinoic acid by aldehyde dehydrogenase, these results suggest that retinoic acid activation of ADH3 constitutes a positive feedback loop regulating retinoic acid synthesis.  相似文献   

14.
15.
16.
17.
Retinoic acid (RA) receptor (RAR) beta2 has been shown to be underexpressed in human breast cancer cells, including MCF-7 cells, and recent reports have suggested that hypermethylation of the RAR beta2 promoter and 5'-UTR is the underlying cause. Here we show that RAR alpha2 is also underexpressed in MCF-7 breast cancer cells, at both the message and the protein level, relative to normal or nontumorigenic breast epithelial cells. Bisulfite sequencing of the CpG island in the RAR alpha2 promoter revealed highly penetrant and uniform cytosine methylation in MCF-7 cells. Pretreatment with the DNA methyltransferase inhibitor, azacytidine, followed by treatment with RA and a histone deacetylase inhibitor, trichostatin A, resulted in partial promoter demethylation and RAR alpha2 induction, which strongly suggested that promoter hypermethylation is responsible for RAR alpha2 underexpression. We compared the outcome of ectopic expression in MCF-7 cells of matched levels of RAR alpha2 and RAR beta2. On the basis of a clonogenic assay, RAR alpha2 displayed ligand-dependent growth-suppressive activity similar to that of RARb eta2; thus, 10 and 20 nM RA inhibited clonogenic growth by 52 and 80%, respectively, in RAR alpha2-transfected cells compared with 75 and 77%, respectively, in RAR beta2-transfected cells. We conclude that the silencing of the RAR alpha2 promoter by hypermethylation may play a contributory role in the dysregulation of RA signaling in mammary tumorigenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号