首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coryneform hydrogen bacterium strain GZ 29, assigned to Corynebacterium autotrophicum fixed molecular nitrogen under autotrophic (H2, CO2) as well as under heterotrophic (sucrose) conditions. Physiological parameters of nitrogen fixation were measured under heterotrophic conditions. The optimal dissolved oxygen concentration for cells grown in a fermenter with N2 was rather low (0.14 mg O2/l) compared with cells grown in the presence of NH 4 + (4.45 mg O2/l). C. autotrophicum GZ 29 had a doubling time of 3.7 h at 30°C with N2 as N-source and sucrose as carbon source and at optimal pO2. Acetylene reduction reached values of 12 nmoles of ethylene produced/minxmg protein. Although the oxygen concentration in the growing culture was kept constant, the optimal dissolved oxygen tension for the acetylene reduction assay shifted to higher pO2-values. The overall efficiency of nitrogen fixation amounted to 22 mg N fixed/g sucrose consumed; it reached a maximal value of 65 mg N fixed/g sucrose consumed at the beginning of the exponential growth phase. Intact cells reduced acetylene even under anaerobic test conditions; further anaerobic metabolic activity could not be ascertained so far.  相似文献   

2.
Oscillatoria sp. strain 23 is a filamentous, non-heterocystous cyanobacterium that fixes nitrogen aerobically. Although, in this organism nitrogenase is inactivated by oxygen a high tolerance is observed. Up to a pO2 of 0.15 atm, oxygen does not have any measurable effects on acetylene reduction. Higher concentrations of oxygen inhibited the activity to a relatively high degree. Evidence for two mechanisms of oxygen protection of nitrogenase in this cyanobacterium was obtained. A high rate of synthesis of nitrogenase may allow the organism to maintain a certain amount of active enzyme under aerobic conditions. Secondly, a switch off/on mechanism may reversibly convert the active enzyme into a non-active form which is insensitive to oxygen inactivation after a sudden and short-term exposure to high oxygen concentrations. It is conceived that these mechanisms in addition to a temporal separation of nitrogen fixation from oxygenic photosynthesis sufficiently explain the regulation process of aerobic nitrogen fixation in this organism.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - CAP chloramphenicol  相似文献   

3.
Fermentative degradation of alcohols and aldehydes in the absence of sulfate was investigated using a propionate-oxidizing, sulfate-reducing bacterium, Desulfobulbus propionicus strain MUD (DSM 6523). The organism converted ethanol plus CO2 to acetate and propionate. The conversion was not affected by the presence of hydrogen. Strain MUD converted propanol plus acetate to propionate. Acetaldehyde and propionaldehyde were also converted with a dismutation reaction in the absence of sulfate. The products were propionate and acetate from acetaldehyde, and propionate from propionaldehyde plus acetate.  相似文献   

4.
A halotolerant, alkaliphilic dissimilatory Fe(III)-reducing bacterium, strain SFB, was isolated from salt flat sediments collected from Soap Lake, WA. 16S ribosomal ribonucleic acid gene sequence analysis identified strain SFB as a novel Bacillus sp. most similar to Bacillus agaradhaerens (96.7% similarity). Strain SFB, a fermentative, facultative anaerobe, fermented various hexoses including glucose and fructose. The fructose fermentation products were lactate, acetate, and formate. Under fructose-fermenting conditions in a medium amended with Fe(III), Fe(II) accumulated concomitant with a stoichiometric decrease in lactate and an increase in acetate and CO2. Strain SFB was also capable of respiratory Fe(III) reduction with some unidentified component(s) of Luria broth as an electron donor. In addition to Fe(III), strain SFB could also utilize nitrate, fumarate, or O2 as alternative electron acceptors. Optimum growth was observed at 30°C and pH 9. Although the optimal salinity for growth was 0%, strain SFB could grow in a medium with up to 15% NaCl by mass. These studies describe a novel alkaliphilic, halotolerant organism capable of dissimilatory Fe(III) reduction under extreme conditions and demonstrate that Bacillus species can contribute to the microbial reduction of Fe(III) in environments at elevated pH and salinity, such as soda lakes.  相似文献   

5.
Hydrogen-supported nitrogenase activity was demonstrated in Anabaena cylindrica cultures limited for reductant. Nitrogen-fixing Anabaena cylindrica cultures sparged in the light with anaerobic gases in the presence of the photosynthesis inhibitor DCMU slowly lost their ability to reduce acetylene in the light under argon but exhibited near normal activities in the presence of 11% H2 (balance argon). The hydrogen-supported nitrogenase activity was half-saturated between 2 and 3% H2 and was strongly inhibited by oxygen (50% inhibition at about 5–6% O2). Batch cultures of Anabaena cylindrica approaching stationary growth phase (“old” cultures) lost nitrogenase-dependent hydrogen evolution almost completely. In these old cultures hydrogen relieved the inhibitory effects of DCMU and O2 on acetylene reduction. Our results suggest that heterocysts contain an uptake hydrogenase which supplies an electron transport chain to nitrogenase but which couples only poorly with the respiratory chain in heterocysts and does not function in CO2 fixation by vegetative cells.  相似文献   

6.
【背景】我国甘蔗生产中氮肥过量施用严重,导致生产成本居高不下,充分发挥甘蔗与内生固氮菌的联合固氮作用,减少氮肥施用量,对促进我国甘蔗产业可持续发展具有重要意义。【目的】筛选优势甘蔗内生固氮菌,对其基本特性、联合固氮效率及促生长功能进行评价。【方法】从甘蔗根系分离到一株内生固氮菌GXS16,利用乙炔还原法测定固氮酶活性,通过PCR扩增nifH基因确定菌株为固氮菌;通过形态观察、Biolog检测和16S rRNA基因序列分析等对菌株进行分类;通过接种盆栽甘蔗检测菌株的促生长作用,采用15N同位素稀释法检测菌株相对固氮效率。【结果】菌株GXS16固氮酶活性为2.42μmol-C2H4/(h·mL),根据菌株培养性状和菌体形态观察、Biolog检测、16S rRNA、nifH、acdS基因序列分析结果,菌株GXS16属于伯克氏菌属(Burkholderia);菌株GXS16还具有1-氨基环丙烷-1-羧酸脱氨酶(1-Aminocyclopropane-1-Carboxylate Deaminase,ACC)活性及合成生长素吲哚乙酸...  相似文献   

7.
The marine purple nonsulfur bacterium, Rhodopseudomonas sulfidophila, strain W4, was capable of photosynthetic growth on dinitrogen and malate. Higher growth rates were observed when either glutamate or ammonia replaced dinitrogen as nitrogen source and when bicarbonate was omitted from the culture medium. Although ammonia was released from cells growing on malate and N2, no nitrogenase activity could be detected unless -ketoglutarate was added to the culture medium. No nitrogenase activity was found in cultures grown in the presence of NH 4 + . In cultures grown on glutamate as nitrogen source, nitrogenase and hydrogenase activities were found to be 5.4 nmol C2H2 reduced · min-1 · mg-1 dry weight and 50 nmol methylene blue reduced · min-1 · mg-1 dry weight respectively. Such activities are significantly lower than those observed for other members of the Rhodospirillaceae e.g. Rhodopseudomonas capsulata. However, the hydrogenase activity would be sufficient to recycle all H2 produced by nitrogenase. It was indeed observed that growing cells did not evolve molecular hydrogen during photoheterotrophic growth and that H2 stimulated nitrogenase activity in resting cells of R. sulfidophila. The nitrogenase from this bacterium proved to be extremely sensitive to low concentrations of oxygen, half-inhibition occurring at between 1–1.5% O2 in the gas phase, depending on the bacterial concentration. Light was essential for nitrogenase activity. No activity was found during growth in the dark under extremely low oxygen concentrations (1–2% O2), which are still sufficient to support good growth. Resting cell suspensions prepared from such cultures were unable to reduce acetylene upon illumination. Optimum nitrogenase activities were broadly defined over the temperature range, 30–38°C, and between pH 6.9 and 8.0. The results are discussed in comparison with the non-marine purple nonsulfur bacterium, R. capsulata, which somewhat resembles R. sulfidophila.  相似文献   

8.
Nitrogenase (EC 1.7.99.2) activity (acetylene reduction) and nitrogen fixation (15N2 fixation) were measured in cyanobacteria freshly isolated from the coralloid roots of Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Light and gas phase oxygen concentration had marked interactive effects on activity, with higher (up to 100-fold) rates of acetylene reduction and 15N2 fixation in light. The relationship between ethylene formation and N2-fixation varied in the freshly isolated cyanobacteria from 4 to 7 nanomoles of C2H4 per nanomole 15N2. Intact coralloid roots, incubated in darkness and ambient air, showed a value of 4.3. Maximum rates of nitrogenase activity occurred at about 0.6% O2 in light, while in darkness there was a broad optimum around 5 to 8% O2. Inhibition of nitrogenase, in light, by pO2 above 0.6% was irreversible. Measurements of light-dependent O2 evolution and 14CO2 fixation indicated negligible photosynthetic electron transport involving photosystem II and, on the basis of inhibitor studies, the stimulatory effect of light was attributed to cyclic photophos-phorylation. Nitrogenase activity of free-living culture of an isolate from Macrozamia (Nostoc PCC 73102) was only slightly inhibited by O2 levels above 6% O2 and the inhibition was reversible. These cells showed rates of light-dependent O2 evolution and 14CO2 fixation which were 100- to 200-fold higher than those by the freshly isolated symbiont. Furthermore, nitrogenase activity was dependent on both photosynthetic electron transport and photophosphorylation. These data indicate that cyanobacteria within cycad coralloid roots are differentiated specifically for symbiotic functioning in a microaerobic environment. Specializations include a high heterocyst frequency, enhanced permeability to O2, and a direct dependence on the cycad for substrates to support nitrogenase activity.  相似文献   

9.
We report a study of nitrogenase activity (acetylene reduction) and hydrogen gas metabolism in intact smooth cyanobacterial mats from Hamelin Pool, Shark Bay, Western Australia. The predominant cyanobacterial population in these mats is Microcoleus chthonoplastes. The mats had a significant capacity for nitrogen fixation, predominantly attributable to the photosyn‐thetic component. By physical and chemical perturbation we revealed an active hydrogen metabolism within the mats. Most of the H2 formation was attributed to fermentative processes, whereas hydrogen was consumed in light‐dependent, together with oxygen‐ and sulfate‐dependent respiratory processes. It was concluded that H2 formed by fermentative bacteria in the dark drives a significant proportion of sulfate reduction in the mats, but there was little H2 transfer from the cyanobacteria to the sulfate‐reducing bacteria. Thus photosynthetically produced H2 gas is unlikely to significantly alter the previously measured carbon: sulfur ratio relating photosynthesis to sulfate reduction.  相似文献   

10.
Summary Isotopic15N2 experiments confirmed nitrogen fixation inParasponia parviflora. The conversion ratio C2H4/N2 was 6.7 under the experimental conditions employed. Measurements of the δ15N in leaves of Parasponia and Trema showed on the basis of these determinations thatParasponia parviflora possesses N2-fixing capacity and can be distinguished in this respect from the non-nitrogen-fixingTrema cannabina tested by the same method. Therefore, δ15N can be used to monitor N2 fixation in natural ecosystems. Hydrogen evolution and the relative efficiency of N2 fixation in this relation have been determined. DetachedParasponia parviflora root nodules grown in soil and tested in an argon/oxygen atmosphere produced appr. 4 μmol H2.h−1.g−1 fresh weight root nodules. The relative efficiency of hydrogen utilization as measured in argon, air, and in the presence of C2H2 10% (v/v) was for both equations used for to express this efficiency 0.96 and 0.97, respectively. This indicates that Parasponia like the root nodules of some actinorhizal symbioses (Alnus, Myrica, Elaeagnus) and some tropical legumes (Vigna sinensis) has evolved mechanisms of minimizing net hydrogen production in air, thus increasing the efficiency of electron transfer to nitrogen. The oxygen relation of nitrogen fixation (C2H2) inParasponia parviflora root nodules was determined. The nitrogenase activity of Parasponia root nodules increased at increasing oxygen concentrations up till c. 40% O2. At oxygen levels above 40% O2, the nitrogenase activity of the root nodules was nil or very erratic suggesting that at these oxygen levels the nitrogenase is not longer protected against the harmful effect of oxygen. In this respect Parasponia root nodules differ from actinorhizal root nodules in other nonlegumes, where optimal nitrogenase activity was observed in the range of 12–25% oxygen. Respiration experiments with Parasponia root nodules showed that in the range 10, 20, and 40% oxygen, the respiration rate (CO2 evolution) increased concomitantly with an increase of the acetylene reduction rate. The CO2/C2H4 values obtained varied between 8.1 and 19.2, being therefore 2–3 times higher than similar estimations in some actinorhizal and legume root nodules. The respiratory quotient (RQ) of detachedParasponia parviflora root nodules was in air initially approximately 2.0, but this value dropped to about 1.0 in a 3-hours period.  相似文献   

11.
Frankia, the actinomycete partner in the nitrogenfixing symbiosis of certain woody non-legumes, has been shown to fix nitrogen in pure culture under aerobic conditions. The sensitivity of in vivo nitrogen-fixation (acetylene reduction) to oxygen tension in the gas phase was measured in short-term assays with two Frankia isolates designated ARI3 and CcI3. The carbon source utilized had an effect on the optimum O2 concentration for acetylene reduction. Cells utilizing an organic acid, e.g., propionate or pyruvate had maximum nitrogenase activity at an oxygen concentration of 15 to 20%. In contrast, cells respiring a sugar, e.g., trehalose or glucose, or endogenous reserves (glycogen or trehalose) had maximum acetylene reduction activity at 5 to 10% in the gas phase. Oxygen uptake kinetics showed that respiration in vesicle-containing cells utilizing trehalose had a biphasic response to oxygen concentration with a diffusion limited component at oxygen concentrations of 20 M to more than 300 M. These results suggested that trehalose was oxidized in the vesicles as well as in the vegetative hyphae. Oxygen concentration also had an effect on the trehalose-supported growth of cells (non nitrogenfixing, [+NH4Cl]). Cells grown with 5–10% O2 in the gas phase had a doubling time approximately half those grown with 20% O2 (atmospheric). Propionate-grown cells showed similar growth rates at the two oxygen tensions, and grew faster (almost 2x) than the trehalose cells at 5–10% O2. Trehalose also supported approximately 40% lower rates of oxygen uptake than propionate in vesicle-containing cells.  相似文献   

12.
Summary Of 45 fermentative gram negative bacterial isolates examined from wheat roots, three were capable of fixing atmospheric nitrogen as determined by the acetylene reduction technique and by protein contents of cells. A gram negative non-motile facultatively anaerobic bacterial strain capable of N2 fixation was identified asKlebsiella oxytoca ZMK-2.Optimal growth and N2 fixation occurred at pH 6.5. The optimum temperatures for growth under anaerobic conditions ranged between 30°–37°C. Acetylene reduction by intact cells was strikingly inhibited by 0.1 atm. or greater partial pressure of O2. Furthermore, the accumulation of H2 in the gas phase over cultures ofKlebsiella oxytoca ZMK-2 at partial pressures greater than 0.02 atm. resulted in a striking inhibition in the rate of C2H2 reduction. The addition of suspensions of eitherKlebsiella oxytoca ZMK-2 orAzotobacter vinelandii or a mixed culture of these two organisms to axenic cultures of wheat plants produced no significant increase in plant growth as measured by plant dry weight or nitrogen content of plants.  相似文献   

13.
Gloeocapsa sp., a species of anicellular blue-green alga, fixes dinitrogen mostly under light. The energy (ATP and reductant) needed for nitrogen fixation may be provided by photoreaction and aerobic catabolism. The nitrogenase activity (acetylene reduction) in vivo was decreased under the conditions of dark and inhibition of photo-phosphorylation or oxidative phosphorylation in the light. When photosystem Ⅱ was inhibited by the presence of DCMU, nitrogenase activities in both reactions of acetylene reduction and hydrogen evolution may be muchenhanced probably due to eliminating of the damage caused by the oxygen produced in the photolysis of water. The effects of the oxygen present in the atmosphere of the reaction systemand produced by the cells are different. It is shown that some trace oxygen seems to be required for nitrogen fixation by the energy supply of aerobic actabolism and oxidative phosphorylation. While the fixation of dinitrogen was inhibited by CO or no any reducible substrate was present, 70-100% of the energy accepted by nitrogenase was evolved as hydrogen. The algal cells also showed hydrogen uptake reaction, but no enhancement of nitrogen fixation by the hydrogen uptake was found.  相似文献   

14.
The aerobic hydrogen-oxidizing bacterium Alcaligenes latus represented by three strains was found to be able to grow with dinitrogen as the sole nitrogen source: The doubling time of total (Kjeldahl) nitrogen during growth on glucose at 30°C under an atmosphere containing 2% (v/v) oxygen in dinitrogen amounted to 39 h, while that in the presence of ammonium was 3 h. Nitrogen fixation did apparently not occur under air. During diazotrophic growth the cells accumulated up to 75% (w/dry weight) poly--hydroxybutyric acid. The efficiency of nitrogen fixation varied between 10 and 15 mg N per g glucose utilized. The specific nitrogenase activity measured in the acetylene reduction assay amounted to 5–17 nmol C2H4 formed per min and mg protein.  相似文献   

15.
The effect of oxygen on N2-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 μM O2, some of them being carbon limited. All strains needed a minimum amount of oxygen for N2-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O2 concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N2 fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N2 fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O2 concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.  相似文献   

16.
The interaction between nitrate respiration and nitrogen fixation inAzospirillum lipoferum andA. brasilense was studied. All strains examined were capable of nitrogen fixation (acetylene reduction) under conditions of severe oxygen limitation in the presence of nitrate. A lag phase of about 1 h was observed for both nitrate reduction and nitrogenase activity corresponding to the period of induction of the dissimilatory nitrate reductase. Nitrogenase activity ceased when nitrate was exhausted suggesting that the reduction of nitrate to nitrite, rather than denitrification (the further reduction of nitrite to gas) is coupled to nitrogen fixation. The addition of nitrate to nitrate reductase negative mutants (nr-) ofAzospirillum did not stimulate nitrogenase activity. Under oxygen-limited conditionsA. brasilense andA. lipoferum were also shown to reduce nitrate to ammonia, which accumulated in the medium. Both species, including strains ofA. brasilense which do not possess a dissimilatory nitrite reductase (nir-) were also capable of reducing nitrous oxide to N2.  相似文献   

17.
Nitrogen fixation has been investigated during chemostat fermentations with a culture of Methylococcus capsulatus with natural gas. It is demonstrated that nitrogen fixation occurs under conditions when either nitrate or ammonia as nitrogen source is insufficient for the growth on fixed supply of methane and oxygen. The fixation occurs contrary to expectations within a wide range of dilution rates and with variation of concentration of liquid source of nitrogen. An O2 optimum is determined for the nitrogenase system of the culture in an assay. During fermentation a complete abolishment of nitrogenase reaction is attained at 15% air saturation (dissolved oxygen). Conditions for N2 fixation is unaltered with change of pH from 6.8 to 5.7.  相似文献   

18.
A strictly anaerobic, thermophilic, fatty acids-degrading, sporulating sulfate-reducing bacterium was isolated from geothermal ground water. The organism stained Gram-negative and formed gas vacuoles during sporulation. Lactate, ethanol, fructose and saturated fatty acids up to C18 served as electron donors and carbon sources with sulfate as external electron acceptor. Benzoate was not used. Stoichiometric measurements revealed a complete oxidation of part of butyrate although growth with acetate as only electron donor was not observed. The rest of butyrate was oxidized to acetate. The strain grew chemolithoautotrophically with hydrogen plus sulfate as energy source and carbon dioxide as carbon source without requirement of additional organic carbon like acetate. The strain contained a c-type cytochrome and presumably a sulfite reductase P582. Optimum temperature, pH and NaCl concentration for growth were 54°C, pH 7.3–7.5 and 25 to 35 g NaCl/l. The G+C content of DNA was 50.4 mol %. Strain BSD is proposed as a new species of the spore-forming sulfate-reducing genus Desulfotomaculum, D. geothermicum.  相似文献   

19.
The cyanobacterium Anabaena cylindrica B629 was suspended in small glass beds and incubated in a gas-tight glass vessel outdoors under a gas atmosphere comprising carbon monoxide (0.2%), acetylene (5%), oxygen (6.5%), and nitrogen. The solution phase initially contained sodium bicarbonate (10mM) at pH 7. Under these conditions the organism continuously produced hydrogen gas for over three weeks. The temperature of the culture was maintained below 30°C and minimum night temperatures were recorded. The vessel was covered by a shadecloth, which reduced the natural illumination by approximately 70%. The system is an alternative to those requiring the strict absence of oxygen and little nitrogen, and requires virtually no attention during the incubation period.  相似文献   

20.
Rhizobium trifolii 0403 was treated with 16.6 mM succinate and other nutrients and thereby induced to grow in nitrogen-free medium. The organism grew microaerophilically on either semisolid or liquid medium, fixing atmospheric nitrogen to meet metabolic needs. Nitrogen fixation was measured via 15N incorporation (18% 15N enrichment in 1.5 doublings) and acetylene reduction. Nitrogen-fixing cells had a Km for acetylene of 0.07 atm (ca. 7.09 kPa), required about 3% oxygen for optimum growth in liquid medium, and showed a maximal specific activity of 5 nmol of acetylene reduced per min per mg of protein at 0.04 atm (ca. 4.05 kPa) of acetylene. The doubling time on N-free liquid medium ranged from 1 to 5 days, depending on oxygen tension, with an optimum temperature for growth of about 30°C. Nodulation of white clover by the cultures showing in vitro nitrogenase activity indicates that at least part of the population maintained identity with wild-type strain 0403.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号