首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Portal hypertension initiates a splenorenal reflex, whereby increases in splenic afferent nerve activity and renal sympathetic nerve activity cause a decrease in renal blood flow (RBF). We postulated that mesenteric vascular congestion similarly compromises renal function through an intestinal-renal reflex. The portal vein was partially occluded in anesthetized rats, either rostral or caudal to the junction with the splenic vein. Portal venous pressure increased (6.5 +/- 0.1 to 13.2 +/- 0.1 mmHg; n = 78) and mesenteric venous outflow was equally obstructed in both cases. However, only rostral occlusion increased splenic venous pressure. Rostral occlusion caused a fall in RBF (-1.2 +/- 0.2 ml/min; n = 9) that was attenuated by renal denervation (-0.5 +/- 0.1 ml/min; n = 6), splenic denervation (-0.2 +/- 0.1 ml/min; n = 11), celiac ganglionectomy (-0.3 +/- 0.1 ml/min; n = 9), and splenectomy (-0.5 +/- 0.1 ml/min; n = 6). Caudal occlusion induced a significantly smaller fall in RBF (-0.5 +/- 0.1 ml/min; n = 9), which was not influenced by renal denervation (-0.2 +/- 0.2 ml/min; n = 6), splenic denervation (-0.1 +/- 0.1 ml/min; n = 7), celiac ganglionectomy (-0.1 +/- 0.3 ml/min; n = 8), or splenectomy (-0.3 +/- 0.1 ml/min; n = 7). Renal arterial conductance fell only in intact animals subjected to rostral occlusion (-0.007 +/- 0.002 ml.min(-1).mmHg(-1)). This was accompanied by increases in splenic afferent nerve activity (15.0 +/- 3.5 to 32.6 +/- 6.2 spikes/s; n = 7) and renal efferent nerve activity (32.7 +/- 5.2 to 39.3 +/- 6.0 spikes/s; n = 10). In animals subjected to caudal occlusion, there were no such changes in renal arterial conductance or splenic afferent/renal sympathetic nerve activity. We conclude that the portal hypertension-induced fall in RBF is initiated by increased splenic, but not mesenteric, venous pressure, i.e., we did not find evidence for intestinal-renal reflex control of the kidneys.  相似文献   

2.
Increasing body core temperature reflexly decreases renal blood flow (RBF), and the hypothalamic paraventricular nucleus (PVN) plays an essential role in this response. ANG II in the brain is involved in the cardiovascular responses to hyperthermia, and ANG II receptors are highly concentrated in the PVN. The present study investigated whether ANG II in the PVN contributes to the cardiovascular responses elicited by hyperthermia. Rats anesthetized with urethane (1-1.4 g/kg iv) were microinjected bilaterally into the PVN (100 nl/side) with saline (n = 5) or losartan (1 nmol/100 nl) (n = 7), an AT1 receptor antagonist. Body core temperature was then elevated from 37°C to 41°C and blood pressure (BP), heart rate (HR), RBF, and renal vascular conductance (RVC) were monitored. In separate groups losartan (n = 4) or saline (n = 4) was microinjected into the PVN, but body core temperature was not elevated. Increasing body core temperature in control rats elicited significant decreases in RBF (-48 ± 5% from a resting level of 14.3 ± 1.4 ml/min) and MVC (-40 ± 4% from a resting level of 0.128 ± 0.013 ml/min·mmHg), and these effects were entirely prevented by pretreatment with losartan. In rats in which body core temperature was not altered, losartan microinjected into the PVN had no significant effects on these variables. The results suggest that endogenous ANG II acts on AT1 receptors in the PVN to mediate the reduction in RBF induced by hyperthermia.  相似文献   

3.
Differences in blood perfusion rates between tumors and normal tissue can be utilized to selectively heat many solid tumors. Blood flow in normal tissues is considerably increased at temperatures commonly applied during localized hyperthermia. In contrast, tumor blood flow may respond to localized heat typically in two different blood flow patterns: Flow may either decrease continuously with increasing exposure time and/or temperature or flow may exhibit a transient increase followed by a decline. A decrease in blood flow at high thermal doses can be observed in most of the tumors, whereas an increase in flow at low thermal doses seems to occur less frequently. The inhibition of blood flow at high thermal doses may lead to physiological changes in the microenvironment of the cancer cells that increase the cell killing effect of hyperthermia. Flow increases at low thermal doses can enhance the efficiency of other treatment modalities, such as irradiation or the administration of antiproliferate drugs.  相似文献   

4.

Background  

There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure) mainly due to the highly unspecific nature of the disease.  相似文献   

5.
The mesenteric circulation is regulated by multiple mechanisms, there is sufficient reason to support the suspicion that local metabolic factors are especially important in the control of intestinal vasculature. Of these, adenosine, a purine nucleoside and mesenteric vasodilator, may be the messenger of the intestinal tissue to signal appropriate responses of the intestinal vessels. The evidence supporting the candidacy of the nucleoside as a local regular of mesenteric circulation may be summarized, as follows: Adenoside is present in the tissue of the gut in measurable quantities. Exogenous adenosine is a powerful dilator of mesenteric resistance vessels. Blockade of adenosine receptors in the mesenteric circulation interferes significantly with three autoregulatory phenomena, i.e., postprandial hyperemia, pressure-flow autoregulation, and reactive hyperemia. The evidence which weakens the role of adenosine as mesenteric vasoregulator includes: Findings in several reports that adenosine depressed intestinal oxygen consumption. The failure of adenosine receptors to inhibit some autoregulatory hyperemias of the gut and the rather limited amount of evidence regarding tissue adenosine release in autoregulatory responses of the gut's vasculature.  相似文献   

6.
7.
8.
Blockade of GABA-A receptors in the hypothalamic paraventricular nucleus (PVN) has been repeatedly shown to increase arterial blood pressure (ABP), heart rate (HR), and sympathetic nerve activity (SNA), but the mechanism(s) that underlies this response has not been determined. Here, we tested whether full expression of the response requires activation of local ANG II AT1 receptors. ABP, HR, and renal SNA responses to PVN microinjection of bicuculline methobromide (BIC; 0.1 nmol) were recorded before and after microinjection of vehicle (saline); losartan (or L-158809), to block local AT1 receptors; or PD123319, to block AT2 receptors. After PVN microinjection of vehicle or PD123319 (10 nmol), BIC significantly (P < 0.05) increased mean arterial pressure (MAP), HR, and renal SNA. However, PVN microinjection of 2 and 20 nmol of losartan dose dependently reduced responses to PVN-injected BIC, with the 20-nmol dose nearly abolishing MAP (P < 0.005), HR (P < 0.05), and renal SNA (P < 0.005) responses. Another AT1 receptor antagonist, L-158809 (10 nmol), produced similar effects. Neither losartan nor L-158809 altered baseline parameters. Responses to PVN injection of BIC were unchanged by losartan (20 nmol) given intravenously or into the PVN on the opposite side. MAP, HR, and renal SNA responses to PVN microinjection of l-glutamate (10 nmol) were unaffected by PVN injection of losartan (20 nmol), indicating that effects of losartan were not due to nonspecific depression of neuronal excitability. We conclude that pressor, tachycardic, and renal sympathoexcitatory responses to acute blockade of GABA-A receptors in the PVN depend on activation of local AT1 receptors.  相似文献   

9.
Reactivity of the superior mesenteric artery has been studied in rat Wistar by infusion of biogenic amines (noradrénaline, dopamine, serotonin, acetylcholine and histamine) in presence of phenoxybenzamine. A decrease in reactivity of the post-synaptic alpha receptor located on the mesenteric vascular smooth muscle cell was seen three days after irradiation by 2 Kr.  相似文献   

10.
11.
12.
IntroductionCerebral blood flow and thermal perception during physical exercise under hyperthermia conditions in females are poorly understood. Because sex differences exist for blood pressure control, resting middle cerebral artery velocity (MCAVmean), and pain, we tested the hypothesis that females would have greater reductions in MCAvmean and increased thermal perceptual strain during exercise hyperthermia compared to males.MethodsTwenty-two healthy active males and females completed 60 min of matched exercise metabolic heat production in a 1) control cool (24.0 ± 0.0 °C; 14.4 ± 3.4% Rh) and 2) hot (42.3 ± 0.3 °C; 28.4 ± 5.2% Rh) conditions in random order, separated by at least 3 days while MCAvmean, thermal comfort, and preference was obtained during the exercise.ResultsCompared to 36 °C mean body temperature (Mbt), as hyperthermia increased to 39 °C Mbt, females had a greater reduction in absolute (MCAvmean), and relative change (%Δ MCAvmean) and conductance (%Δ MCAvmean conductance) in MCAVmean compared to males (Interaction: Temperature x Sex, P ≤ 0.002). During exercise in cool conditions, absolute and conductance MCAvmean was maintained from rest through exercise; however, females had greater MCAVmean compared to males (Main effect: Sex, P < 0.0008). We also found disparities in females' perceptual thermal comfort and thermal preference. These differences may be associated with a greater reduction in partial pressure of end-tidal CO2, and different cardiovascular and blood pressure control to exercise under hyperthermia.ConclusionsIn summary, females exercise cerebral blood flow velocity is reduced to a greater extent (25% vs 15%) and the initial reduction occurs at lower hyperthermia mean body temperatures (~38 °C vs ~39 °C) and are under greater thermal perceptual strain compared to males.  相似文献   

13.
14.
To test the hypothesis that fetal lambs are able to maintain oxygen delivery to myocardial, brain and adrenal tissues during reduction in uterine blood flow to 25% of control, we performed experiments on five ewes and their fetuses. A snare occluder was placed around the maternal common hypogastric artery and catheters were placed for measurement of blood pressures, flows, blood gas tensions, pH and oxygen content. After a five day recovery period, control measurements were made. The snare occluder was then closed until the artery was fully occluded. The arterial occlusion caused uteroplacental blood flow to fall to 32 +/- 4% and maternal placental blood flow to fall to 25 +/- 3% of control values. This level of asphyxia was maintained for 19 +/- 3 minutes, when maternal and fetal blood flows were measured again. In response to occlusion, fetal ascending aortic PO2 fell from 21 +/- 2 (SEM) to 13 +/- 2 mmHg (P less than or equal to 0.01), oxygen content from 4.3 +/- 0.3 to 1.4 +/- 0.2 mM (P less than or equal to 0.01) and pH from 7.37 +/- 0.01 to 7.21 +/- 0.05 (P less than or equal to 0.01). PCO2 rose from 48 +/- 1 to 62 +/- 3 mmHg (P less than or equal to 0.01). Fetal arterial blood pressure increased from 51 +/- 3 to 61 +/- 3 mmHg (P less than or equal to 0.001) and heart rate decreased from 172 +/- 10 to 104 +/- 4 beats.min-1 (P less than or equal to 0.01). The heart, brain and adrenals showed vasodilation in response to the asphyxic stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
17.
18.
Unlike sodium, potassium is vasoactive; for example, when infused into the arterial supply of a vascular bed, blood flow increases. The vasodilation results from hyperpolarization of the vascular smooth muscle cell subsequent to potassium stimulation by the ion of the electrogenic Na+-K+ pump and/or activating the inwardly rectifying Kir channels. In the case of skeletal muscle and brain, the increased flow sustains the augmented metabolic needs of the tissues. Potassium ions are also released by the endothelial cells in response to neurohumoral mediators and physical forces (such as shear stress) and contribute to the endothelium-dependent relaxations, being a component of endothelium-derived hyperpolarization factor-mediated responses. Dietary supplementation of potassium can lower blood pressure in normal and some hypertensive patients. Again, in contrast to NaCl restriction, the response to potassium supplementation is slow to appear, taking approximately 4 wk. Such supplementation reduces the need for antihypertensive medication. "Salt-sensitive" hypertension responds particularly well, perhaps, in part, because supplementation with potassium increases the urinary excretion of sodium chloride. Potassium supplementation may even reduce organ system complications (e.g., stroke).  相似文献   

19.
Neurons within the dorsomedial hypothalamic nucleus (DMH) and perifornical area (PeF), which lie within the classic hypothalamic defense area, subserve the cardiovascular response to psychological stress. Previous studies have shown that electrical stimulation of the hypothalamic defense area causes inhibition of the cardiac and (in some cases) sympathetic components of the baroreceptor reflex. In contrast, naturally evoked psychological stress does not appear to be associated with such inhibition. In this study, we tested the effect of specific activation of neurons within the DMH and PeF on the baroreflex control of renal sympathetic nerve activity and heart rate in urethane-anesthetized rats. Microinjection of bicuculline (a GABA(A) receptor antagonist) into the DMH caused dose-dependent increases in heart rate and renal sympathetic activity, shifted the baroreflex control of both variables to higher levels (i.e., increased the upper and lower plateaus of the baroreflex function curves, and increased the threshold, midpoint, and saturation levels of mean arterial pressure). The maximum gain of the sympathetic component of the baroreflex was also increased, while that of the cardiac component was not significantly changed. Increases in the midpoint were very similar in magnitude to the evoked increases in baseline mean arterial pressure. Microinjection of bicuculline into the PeF evoked very similar effects. The results indicate that disinhibition of neurons in the DMH/PeF region not only increases sympathetic vasomotor activity and heart rate but also resets the baroreceptor reflex such that it remains effective, without any decrease in sensitivity, over a higher operating range of arterial pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号