首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Rats starved for 30h were injected with trace amounts of [3-14C]acetoacetate and beta-hydroxy[3-14C]butyrate 1h after ischaemic limb injury in a 20 degrees C environment, and the concentrations and radioactivities of blood ketone bodies were determined at intervals. 2. Starvation alone raised the rates of production and utilization of beta-hydroxybutyrate plus acetoacetate about 3.7-fold, but lowered their metabolic clearance rates by about 50%. In the starved rat ketone-body oxidation could account for up to 30% of whole body O2 consumption. 3. Injury in starved rats lowered the rates of production and utilization of both beta-hydroxybutyrate and acetoacetate, the combined fall of about 37% slightly exceeding the concomitant fall in whole-body O2 consumption. The concentration of beta-hydroxybutyrate decreased after injury, but its metabolic clearance rate was unaltered; the concentration of acetoacetate rose slightly and its metabolic clearance rate fell.  相似文献   

2.
The kinetics of acetoacetate (A) and beta-hydroxybutyrate (B) have been studied following the injection as a pulse or continued infusion of [3-14C]acetoacetate (A*) or [14C]beta-hydroxybutyrate (B*) into six newly diagnosed, untreated, ketotic diabetic patients, ten obese subjects in the postabsorptive state, and the ten obese subjects after 1-2 weeks starvation (50 cal per day). Employing a compartmental model of acetoacetate and beta-hydroxybutyrate kinetics developed using CONSAM for normal subjects, the rate coefficients (Lij), rates of release of newly synthesized acetoacetate and beta-hydroxybutyrate into the blood (UA, UB), and fractional removal of each compound (FCRA and FCRB) were calculated. Ketone body release into blood (UA + UB) in diabetic subjects was threefold higher than normal (mean +/- SD, 208 +/- 118 versus 81 +/- 66 mumol min-1 m-2) and in obese subjects the rate increased on starvation from 171 +/- 70 to 569 +/- 286 mumol min-1 m-2. In each case most of the increase was in beta-hydroxybutyrate. The major change in diabetes and on starvation of the obese subjects was in the rate coefficient for removal of ketone bodies. Normally 0.168 +/- 0.109 min-1, it was 0.055 +/- 0.040 min-1 in the diabetic patients and fell from 0.066 +/- 0.040 to 0.027 +/- 0.019 min-1 in the obese subjects on starvation. In normal subjects, FCRA was similar to FCRB (0.226 +/- 0.142 versus 0.188 +/- 0.124 min-1). However, in diabetics, FCRA was 0.074 +/- 0.044 and FCRB was 0.050 +/- 0.034 min-1 and both were lower than normal. On starvation of obese subjects, FCRA fell from 0.199 +/- 0.047 to 0.089 +/- 0.035 min-1, whereas FCRB fell from 0.141 +/- 0.040 to 0.033 +/- 0.012 min-1. Therefore, the removal of beta-hydroxybutyrate was impaired more than that of acetoacetate in all patients. Our results confirm previous observations that ketosis is associated with high rates of ketogenesis and a decrease in fractional clearance. In addition, we found that in diabetes, obesity, and in obese subjects following starvation, most of the increased synthesis was in beta-hydroxybutyrate and that the clearance of beta-hydroxybutyrate decreased more than that of acetoacetate.  相似文献   

3.
Ketone-body metabolism in tumour-bearing rats.   总被引:3,自引:3,他引:0       下载免费PDF全文
During starvation for 72 h, tumour-bearing rats showed accelerated ketonaemia and marked ketonuria. Total blood [ketone bodies] were 8.53 mM and 3.34 mM in tumour-bearing and control (non-tumour-bearing) rats respectively (P less than 0.001). The [3-hydroxybutyrate]/[acetoacetate] ratio was 1.3 in the tumour-bearing rats, compared with 3.2 in the controls at 72 h (P less than 0.001). Blood [glucose] and hepatic [glycogen] were lower at the start of starvation in tumour-bearing rats, whereas plasma [non-esterified fatty acids] were not increased above those in the control rats during starvation. After functional hepatectomy, blood [acetoacetate], but not [3-hydroxybutyrate], decreased rapidly in tumour-bearing rats, whereas both ketone bodies decreased, and at a slower rate, in the control rats. Blood [glucose] decreased more rapidly in the hepatectomized control rats. Hepatocytes prepared from 72 h-starved tumour-bearing and control rats showed similar rates of ketogenesis from palmitate, and the distribution of [1-14C] palmitate between oxidation (ketone bodies and CO2) and esterification was also unaffected by tumour-bearing, as was the rate of gluconeogenesis from lactate. The carcinoma itself showed rapid rates of glycolysis and a poor ability to metabolize ketone bodies in vitro. The results are consistent with the peripheral, normal, tissues in tumour-bearing rats having increased ketone-body and decreased glucose metabolic turnover rates.  相似文献   

4.
1. Rates of appearance and disappearance of total ketone bodies were determined in normal, starved and alloxan-diabetic rats by measuring specific radioactivities and concentrations of blood acetoacetate and 3-hydroxybutyrate at different times after injection of 3-hydroxy[(14)C]butyrate. 2. The mean rates of appearance were 1.7, 4.2 and 10.9mumoles/min./100g. body wt. respectively for normal, starved and alloxan-diabetic rats. The rates of disappearance were of the same order of magnitude as the rates of appearance. 3. There was a direct correlation between the rates of appearance and disappearance and the blood concentrations of the ketone bodies. 4. The results indicate that in the rat increased ketone-body production is paralleled by increased ketone-body utilization and that the raised ketone-body concentration in the blood in starvation and alloxan-diabetes is due to a slight imbalance between the rates of production and utilization. 5. The findings are discussed in relation to the concept that ketone bodies can serve as fuels of respiration when the supply of carbohydrate is limited.  相似文献   

5.
Fatty acid metabolism in the perfused rat liver   总被引:4,自引:4,他引:0       下载免费PDF全文
1. The formation of acetoacetate, beta-hydroxybutyrate and glucose was measured in the isolated perfused rat liver after addition of fatty acids. 2. The rates of ketone-body formation from ten fatty acids were approximately equal and independent of chain length (90-132mumol/h per g), with the exception of pentanoate, which reacted at one-third of this rate. The [beta-hydroxybutyrate]/[acetoacetate] ratio in the perfusion medium was increased by long-chain fatty acids. 3. Glucose was formed from all odd-numbered fatty acids tested. 4. The rate of ketone-body formation in the livers of rats kept on a high-fat diet was up to 50% higher than in the livers of rats starved for 48h. In the livers of fat-fed rats almost all the O(2) consumed was accounted for by the formation of ketone bodies. 5. The ketone-body concentration in the blood of fat-fed rats rose to 4-5mm and the [beta-hydroxybutyrate]/[acetoacetate] ratio rose to 11.5. 6. When the activity of the microsomal mixed-function oxidase system, which can bring about omega-oxidation of fatty acids, was induced by treatment of the rat with phenobarbitone, there was no change in the ketone-body production from fatty acids, nor was there a production of glucose from even-numbered fatty acids. The latter would be expected if omega-oxidation occurred. Thus omega-oxidation did not play a significant role in the metabolism of fatty acids. 7. Arachidonate was almost quantitatively converted into ketone bodies and yielded no glucose, demonstrating that gluconeogenesis from poly-unsaturated fatty acids with an even number of carbon atoms does not occur. 8. The rates of ketogenesis from unsaturated fatty acids (sorbate, undecylenate, crotonate, vinylacetate) were similar to those from the corresponding saturated fatty acids. 9. Addition of oleate together with shorter-chain fatty acids gave only a slightly higher rate of ketone-body formation than oleate alone. 10. Glucose, lactate, fructose, glycerol and other known antiketogenic substances strongly inhibited endogenous ketogenesis but had no effects on the rate of ketone-body formation in the presence of 2mm-oleate. Thus the concentrations of free fatty acids and of other oxidizable substances in the liver are key factors determining the rate of ketogenesis.  相似文献   

6.
Male rats were made diabetic by intravenous administration of 75 mg/kg of streptozotocin and were fed, via a pair-feeding regimen, high-fat diets +/- 1,3-butanediol (BD) at 13.5 and 27% of the dietary calories for 30 days and 31 days, respectively. 1,3-Butanediol was added to the diets primarily as a replacement for fat. Food consumption and rat weight were recorded daily. Whole blood glucose concentrations were determined weekly. At sacrifice, liver, pancreas and epididymal fat pads were excised and blood samples were collected. Liver was analyzed for protein and lipid; pancreas was weighed and analyzed for insulin; fat pads were weighed and discarded; and blood was analyzed for glucose and lipid. The 13.5% BD diet increased the beta-hydroxybutyrate, acetoacetate and cholesterol concentrations, decreased the glucose concentration in blood, and increased the insulin content of the pancreas. The BD diets did not affect the concentrations of phospholipid, triglyceride, cholesterol and fatty acid in the liver; fatty acid concentrations in the blood; or the epididymal fat pad weight. The results suggest that BD produced a slight amelioration of the diabetic condition, which may have resulted from an increased capacity of the pancreas to synthesize insulin. In addition, the data provide further evidence suggesting that in the rat BD is oxidized to the ketone bodies, beta-hydroxybutyrate and acetoacetate.  相似文献   

7.
Persistent mild hyperketonemia is a common finding in neonatal rats and human newborns, but the physiological significance of elevated plasma ketone concentrations remains poorly understood. Recent advances in ketone metabolism clearly indicate that these compounds serve as an indispensable source of energy for extrahepatic tissues, especially the brain and lung of developing rats. Another important function of ketone bodies is to provide acetoacetyl-CoA and acetyl-CoA for synthesis of cholesterol, fatty acids, and complex lipids. During the early postnatal period, acetoacetate (AcAc) and beta-hydroxybutyrate are preferred over glucose as substrates for synthesis of phospholipids and sphingolipids in accord with requirements for brain growth and myelination. Thus, during the first 2 wk of postnatal development, when the accumulation of cholesterol and phospholipids accelerates, the proportion of ketone bodies incorporated into these lipids increases. On the other hand, an increased proportion of ketone bodies is utilized for cerebroside synthesis during the period of active myelination. In the lung, AcAc serves better than glucose as a precursor for the synthesis of lung phospholipids. The synthesized lipids, particularly dipalmityl phosphatidylcholine, are incorporated into surfactant, and thus have a potential role in supplying adequate surfactant lipids to maintain lung function during the early days of life. Our studies further demonstrate that ketone bodies and glucose could play complementary roles in the synthesis of lung lipids by providing fatty acid and glycerol moieties of phospholipids, respectively. The preferential selection of AcAc for lipid synthesis in brain, as well as lung, stems in part from the active cytoplasmic pathway for generation of acetyl-CoA and acetoacetyl-CoA from the ketone via the actions of cytoplasmic acetoacetyl-CoA synthetase and thiolase.  相似文献   

8.
A possible mechanism for the anti-ketogenic action of alanine in the rat   总被引:6,自引:6,他引:0  
1. The anti-ketogenic effect of alanine has been studied in normal starved and diabetic rats by infusing l-alanine for 90min in the presence of somatostatin (10μg/kg body wt. per h) to suppress endogenous insulin and glucagon secretion. 2. Infusion of alanine at 3mmol/kg body wt. per h caused a 70±11% decrease in [3-hydroxybutyrate] and a 58±9% decrease in [acetoacetate] in 48h-starved rats. [Glucose] and [lactate] increased, but [non-esterified fatty acid], [glycerol] and [3-hydroxybutyrate]/[acetoacetate] were unchanged. 3. Infusion of alanine at 1mmol/kg body wt. per h caused similar decreases in [ketone body] (3-hydroxybutyrate plus acetoacetate) in 24h-starved normal and diabetic rats, but no change in other blood metabolites. 4. Alanine [3mmol/kg body wt. per h] caused a 72±9% decrease in the rate of production of ketone bodies and a 57±8% decrease in disappearance rate as assessed by [3-14C]acetoacetate infusion. Metabolic clearance was unchanged, indicating that the primary effect of alanine was inhibition of hepatic ketogenesis. 5. Aspartate infusion at 6mmol/kg body wt. per h had similar effects on blood ketone-body concentrations in 48h-starved rats. 6. Alanine (3mmol/kg body wt. per h) caused marked increases in hepatic glutamate, aspartate, malate, lactate and citrate, phosphoenolpyruvate, 2-phosphoglycerate and glucose concentrations and highly significant decreases in [3-hydroxybutyrate] and [acetoacetate]. Calculated [oxaloacetate] was increased 75%. 7. Similar changes in hepatic [malate], [aspartate] and [ketone bodies] were found after infusion of 6mmol of aspartate/kg body wt. per h. 8. It is suggested that the anti-ketogenic effect of alanine is secondary to an increase in hepatic oxaloacetate and hence citrate formation with decreased availability of acetyl-CoA for ketogenesis. The reciprocal negative-feedback cycle of alanine and ketone bodies forms an important non-hormonal regulatory system.  相似文献   

9.
Using the forearm technique, muscular ketone body metabolism was investigated in 12 healthy volunteers during an i.v. infusion of lipid emulsions containing long chain triglycerides (LCT) or a mixture of medium- and long chain triglycerides (MCT/LCT). During the basal period, arterial concentrations and muscular extraction of beta-hydroxybutyrate and acetoacetate were linearly correlated as expected. This relationship was abolished during the infusion of both lipid emulsions. In addition, fractional extraction rates of ketone bodies were reduced. These changes were most probably mediated by elevated levels of free fatty acids and triglycerides as well.  相似文献   

10.
Characteristic changes in ketone body concentrations in blood, liver, and skeletal muscle were investigated in detail in newly hatched chicks. The concentration of beta-hydroxybutyrate in the blood was maximal at hatch (0 day), markedly decreased to 3 days, then maintained at low levels, up to 14 days of age. The concentration of acetoacetate in blood, on the other hand, did not change after hatching but remained lower than that of beta-hydroxybutyrate at all ages. In liver and muscles, the concentration of beta-hydroxybutyrate changed in a manner similar to that in the blood. The muscle to blood ratio of the beta-hydroxybutyrate concentration on days -1 and 0 was significantly higher than those at 1 through 14 days post-hatch. These results show that newly hatched chicks have the same high ketone body concentrations in the skeletal muscle, blood and liver. It is, hence, suggested that uptake of beta-hydroxybutyrate by muscles is substantial or that ketogenesis, if any, occurs in muscles immediately before and after hatching of chicks.  相似文献   

11.
Leucine is catabolized to ketone bodies in adipose tissue, but the contribution of this output to overall ketone metabolism is not known. The intent of the present study was to determine the capacity of different adipose tissues to synthesize ketone bodies from leucine. The amino acid was readily converted into acetoacetate in epididymal, perirenal, and omental fat tissues. In rats fed ad libitum, the rate of acetoacetate synthesis in omental fat (about 2 mumol g tissue-1h-1) was at least 8 times higher than in epididymal or perirenal fat. In omental fat, the rates of acetoacetate formation from alpha-ketoisocaproic acid were 47-55% lower than from leucine at all concentrations examined. There was no significant synthesis of beta-hydroxybutyrate from leucine or alpha-ketoisocaproic acid. After oxidative decarboxylation, a greater proportion (about three-fourths) of leucine in omental fat was metabolized to acetoacetate than to CO2 production through the Krebs cycle. Although addition of glucose, pyruvate, or carnitine did not affect the production of acetoacetate, fasting for 24 h stimulated acetoacetate synthesis from leucine and alpha-ketoisocaproic acid in omental fat. The high rate of leucine conversion to acetoacetate in omental fat was related to high activities of leucine aminotransferase and branched-chain alpha-keto acid dehydrogenase. Moreover, protein content and cytochrome c oxidase activity of omental mitochondria were, respectively, 13 and 12 times higher than in epididymal mitochondria. In contrast, fat content of epididymal adipose tissue was 21 times that of omental adipose tissue. Epididymal depot consisted of 2.0% protein and 75.8% fat, whereas omental depot contains 17.2% protein and 3.6% fat, resembling that of liver and muscle. The results suggest that the high ketogenic capacity of omental fat stems in part from an augmented mitochondrial mass and high activity of branched-chain alpha-keto acid dehydrogenase.  相似文献   

12.
During and after strenuous prolonged exercise, sedentary individuals develop high blood levels of acetoacetate and beta-hydroxybutyrate whereas exercise-trained animals and human subjects do not. We have investigated the possibility that exercise training can increase the capacity of skeletal muscle to oxidize ketones. In this study we measured rates of D-beta[3-14-C]-hydroxybutyrate and [3-14-C]acetoacetate oxidation, and the levels of activity of the enzymes involved in the oxidation of ketones in homogenates of gastrocnemius muscles of exercise-trained and of untrained male rats. The trained animals had markedly lower blood ketone levels immediately and 60 min after a 90 min long bout of exercise than did the sedentary animals. The rates of D-beta-[13-14C]hydroxybutryate and [3-14-C]acetoacetate oxidation were twice as high in homogenates of muscles from the trained as compared to the sedentary rats. The increases in levels of activity in gastrocnemius muscle in response to the exercise program were: beta-hydroxybutyrate dehydrogenase threefold; 3-ketoacid CoA-transferase twofold; and acetoacetyl-CoA thiolase 55%. This exercise-induced increase in the capacity of skeletal muscle to oxidize ketones could play a role in preventing development of ketosis in the physically trained animal during and following prolonged strenuous exercise.  相似文献   

13.
Ketone body kinetics in humans: a mathematical model   总被引:2,自引:0,他引:2  
A model has been developed to account for ketone body kinetics in man based on data following bolus injections of [14C]acetoacetate (A) and [14C]beta-OH butyrate (B) into normal humans in the postabsorptive state. The model consists of separate compartments for blood A and B that are linked by a tissue compartment in which rapid interconversion of the ketone bodies occurs. The probability of movement from blood into this compartment was assumed to be the same for both ketone bodies. Two slowly equilibrating tissue compartments are required to account for the slow components in the tracer data, and thus a five-compartment model is proposed. By modeling the transient tracer data with the tracee in a steady state, ketone body kinetics were defined in terms of the rapid interconversions of A and B, and the slow exchanges of carbon within the tissues. The rates of release of new A and B into blood, (UA and UB) were calculated. These rates were less than the apparent production rates, PRA and PRB, as the PR's included carbon atoms first released as the other ketone body. The exchange constants between the compartments were determined in addition to the fractional catabolic rates (FCR) and metabolic clearance rates (MCR) of A and B. The initial space of distribution was 10 L and the mean values +/- SD (n = 11), normalized to this volume, were UA = 6.4 +/- 5.0, UB = 8.8 +/- 8.0 (mumol L-1 min-1), FCRA = 0.226 +/- 0.142, FCRB = 0.188 +/- 0.124 (min-1), MCRA = 2.26 +/- 1.42, MCRB = 1.87 +/- 1.23 (L min-1) and PRA = 11.1 +/- 7.6, PRB = 12.7 +/- 10.0 (mumol L-1 min-1).  相似文献   

14.
This work demonstrates that in vitro sciatic nerves of normal and trembler adult mice can use ketone bodies (beta-hydroxybutyrate and acetoacetate) and butyrate for lipid synthesis. In normal sciatic nerves, beta-hydroxybutyrate is incorporated in total lipids to a larger extent than acetoacetate (141% and 33%, respectively, of acetate incorporation), whereas for trembler sciatic nerves, these percentages are only 69% and 27%. Incorporation of ketone bodies is greater into sterols than into other lipids. Lipid metabolism of ketone bodies in trembler nerves is altered and could reflect a process similar to Wallerian degeneration: a dramatic decrease of sterol and free fatty acid synthesis and an increased synthesis of triglycerides. Moreover, differences seen in precursor incorporation into lipids between normal and trembler sciatic nerves suggest that their lipid metabolism is not the same.  相似文献   

15.
Metabolic effects of increased mechanical work were studied by comparing isolated pumping rat hearts perfused by the atrial-filling technique with aortic-perfused non-pumping hearts perfused by the technique of Langendorff. The initial medium usually contained glucose (11 mm) and palmitate (0.6 mm bound to 0.1 mm albumin). During increased heart work (comparing pumping with non-pumping hearts) the uptake of oxygen and glucose increased threefold, but that of free fatty acids was unchanged. Tissue contents of alpha-oxoglutarate, NH4+, malate, lactate, pyruvate and Pi rose with increased heart work, but contents of ATP, phosphocreatine and citrate fell. Ketone bodies were produced with a ratio of beta-hydroxybutyrate/acetoacetate of about 3:1 in both pumping and non-pumping hearts but with higher net production rates in non-pumping hearts. When ketone bodies were added in relatively high concentrations (total 4 mm) to a glucose (11 mm) medium the medium, ratios of beta-hydroxybutyrate/acetoacetate were not steady even after 60 min of perfusion. The validity of calculating mitochondrial free NAD+/NADH ratios from the tissue contents of the reactants of the glutamate dehydrogenase system or the beta-hydroxybutyrate dehydrogenase system is assessed. The activities of these enzymes are considerably less in the rat heart than in the rat liver, introducing reservations into the application to the heart of the principles used by Williamson et al. (1967) for calculation of mitochondrial free NAD+/NADH ratios of liver mitochondria...  相似文献   

16.
The effect of ketone body status on occurrence of first ovulation during early lactation was assessed in 84 multiparous dairy cows under field conditions. Animals were equally distributed across 8 farms and were controlled by the same herd fertility monitoring program. Cows were visited twice antepartum and 6 times postpartum at weekly intervals between 5:30 and 8:30 AM. On these occasions, body condition scores and milk yields were measured, blood and milk samples were taken, cows were gynecologically examined, and parameters of reproduction were determined. The onset of first ovulation was specified by milk progesterone determination and rectal palpation. Cows starting postpartum ovarian cyclicity within or after 30 d were classified as early and late responders (ER and LR, respectively). Resumption of the estrous cycle within 30 d postpartum is considered optimal under practical conditions, and classification based on this threshold value resulted in groups of equal size and equal distribution of ER + LR cows within farms. Ketone bodies measured were beta-hydroxybutyrate in serum and acetoacetate and acetone in serum and milk. Blood serum and milk ketone body concentrations during the first 6 wk of lactation were higher in LR than in ER, whereas plasma glucose and nonesterified fatty acid and milk fat, protein and urea concentrations did not differ between groups. Maximal concentrations of ketone bodies from parturition to first ovulation were better predictors of the onset of the estrous cycle than mean or minimal concentrations over the same period. Milk acetone and serum beta-hydroxybutyrate concentrations provided the most reliable information with regard to resumption of ovarian activity of all ketone bodies.  相似文献   

17.
The regulation of ketone-body metabolism and the quantitative importance of ketone bodies as lipid precursors in adult rat brain has been studied in vitro. Utilization of ketone bodies and of pyruvate by homogenates of adult rat brain was measured and the distribution of14C from [3-14C]ketone bodies among the metabolic products was analysed. The rate of ketone-body utilization was maximal in the presence of added Krebs-cycle intermediates and uncouplers of oxidative phosphorylation. The consumption of acetoacetate was faster than that ofd-3-hydroxybutyrate, whereas, pyruvate produced twice as much acetyl-CoA as acetoacetate under optimal conditions. Millimolar concentrations of ATP in the presence of uncoupler lowered the consumption of ketone bodies but not of pyruvate. Indirect evidence is presented suggesting that ATP interferes specifically with the mitochondrial uptake of ketone bodies. Interconversion of ketone bodies and the accumulation of acid-soluble intermediates (mainly citrate and glutamate) accounted for the major part of ketone-body utilization, whereas only a small part was oxidized to CO2. Ketone bodies were not incorporated into lipids or protein. We conclude that adult rat-brain homogenates use ketone bodies exclusively for oxidative purposes.  相似文献   

18.
A Fenselau  K Wallis 《Life sciences》1974,15(4):811-818
Succinyl-CoA: acetoacetate CoA transferases from rat kidney, heart, brain, and skeletal muscle display substrate inhibition by acetoacetate that is characterized by an “inversion concentration” of 4–6 mM acetoacetate, i.e., at acetoacetate concentrations greater than 5 mM inhibition is detectable. A similar effect is manifested with intact, uncoupled kidney mitochondria, suggesting that mitochondrial oxidation of ketone bodies can reflect CoA transferase kinetic properties with regard to acetoacetate inhibition. Since acetoacetate substrate inhibition of rat CoA transferase becomes apparent at concentrations that correspond to the plasma concentrations of total ketone bodies found during pathological ketosis, this substrate inhibotory effect may play a role in establishing the disturbed metabolic pattern of ketone bodies in diabetic animals.  相似文献   

19.
Decreased ketonaemia in the monosodium glutamate-induced obese rats   总被引:3,自引:0,他引:3  
Plasma concentrations of total ketone bodies, acetoacetate (AcAc) and 3-hydroxybutyrate (3-OHBA) in monosodium glutamate (MSG)-induced obese rats were measured. MSG-treated rats showed higher Lee's indices, shorter naso-anal and tail length, and a more marked intraperitoneal fat deposition than control rats. Plasma concentrations of glucose, free fatty acid, triglyceride and phospholipids were significantly increased in the MSG-treated rats as compared to the control rats (24 weeks-old). Plasma levels of total ketone bodies, AcAc and 3-OHBA were all decreased in the MSG-treated rats as compared to control rats. The ratio, 3-OHBA/AcAc in the MSG-treated rats were not different from those in the control rats.  相似文献   

20.
To compensate for the energetic deficit elicited by reduced carbohydrate intake, mammals convert energy stored in ketone bodies to high energy phosphates. Ketone bodies provide fuel particularly to brain, heart, and skeletal muscle in states that include starvation, adherence to low carbohydrate diets, and the neonatal period. Here, we use novel Oxct1(-/-) mice, which lack the ketolytic enzyme succinyl-CoA:3-oxo-acid CoA-transferase (SCOT), to demonstrate that ketone body oxidation is required for postnatal survival in mice. Although Oxct1(-/-) mice exhibit normal prenatal development, all develop ketoacidosis, hypoglycemia, and reduced plasma lactate concentrations within the first 48 h of birth. In vivo oxidation of (13)C-labeled β-hydroxybutyrate in neonatal Oxct1(-/-) mice, measured using NMR, reveals intact oxidation to acetoacetate but no contribution of ketone bodies to the tricarboxylic acid cycle. Accumulation of acetoacetate yields a markedly reduced β-hydroxybutyrate:acetoacetate ratio of 1:3, compared with 3:1 in Oxct1(+) littermates. Frequent exogenous glucose administration to actively suckling Oxct1(-/-) mice delayed, but could not prevent, lethality. Brains of newborn SCOT-deficient mice demonstrate evidence of adaptive energy acquisition, with increased phosphorylation of AMP-activated protein kinase α, increased autophagy, and 2.4-fold increased in vivo oxidative metabolism of [(13)C]glucose. Furthermore, [(13)C]lactate oxidation is increased 1.7-fold in skeletal muscle of Oxct1(-/-) mice but not in brain. These results indicate the critical metabolic roles of ketone bodies in neonatal metabolism and suggest that distinct tissues exhibit specific metabolic responses to loss of ketone body oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号