首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lee S  Kim S  Nahm M  Kim E  Kim TI  Yoon JH  Lee S 《Molecules and cells》2011,32(5):477-482
Sac1 phosphoinositide (PI) phosphatases are important regulators of PtdIns(4)P turnover at the ER, Golgi, and plasma membrane (PM) and are involved in diverse cellular processes including cytoskeletal organization and vesicular trafficking. Here, we present evidence that Sac1 regulates axon guidance in the embryonic CNS of Drosophila. Sac1 is expressed on three longitudinal axon tracts that are defined by the cell adhesion molecule Fasciclin II (Fas II). Mutations in the sac1 gene cause ectopic midline crossing of Fas II-positive axon tracts. This phenotype is rescued by neuronal expression of wild-type Sac1 but not by a catalytically-inactive mutant. Finally, sac1 displays dosage-sensitive genetic interactions with mutations in the genes that encode the midline repellent Slit and its axonal receptor Robo. Taken together, our results suggest that Sac1-mediated regulation of PIs is critical for Slit/Robo-dependent axon repulsion at the CNS midline.  相似文献   

2.
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues that delimit motor axon trajectories, i.e. the floor plate and the rhombic lip. We present in vitro evidence showing that Slit1 and Slit2 proteins are selective inhibitors and repellents for dorsally projecting, but not for ventrally projecting, cranial motor axons. Analysis of mice deficient in Slit and Robo function shows that cranial motor axons aberrantly enter the midline, while ectopic expression of Slit1 in chick embryos leads to specific motor axon projection errors. Expression of dominant-negative Robo receptors within cranial motoneurons in chick embryos strikingly perturbs their projections, causing some motor axons to enter the midline, and preventing dorsally projecting motor axons from exiting the hindbrain. These data suggest that Slit proteins play a key role in guiding dorsally projecting cranial motoneurons and in facilitating their neural tube exit.  相似文献   

3.
4.
Chen Z  Gore BB  Long H  Ma L  Tessier-Lavigne M 《Neuron》2008,58(3):325-332
Alternative splicing provides a means to increase the complexity of gene function in numerous biological processes, including nervous system wiring. Navigating axons switch responses from attraction to repulsion at intermediate targets, allowing them to grow to each intermediate target and then to move on. The mechanisms underlying this switch remain poorly characterized. We previously showed that the Slit receptor Robo3 is required for spinal commissural axons to enter and cross the midline intermediate target. We report here the existence of two functionally antagonistic isoforms of Robo3 with distinct carboxy termini arising from alternative splicing. Robo3.1 is deployed on the precrossing and crossing portions of commissural axons and allows midline crossing by silencing Slit repulsion. Robo3.2 becomes expressed on the postcrossing portion and blocks midline recrossing, favoring Slit repulsion. The tight spatial regulation of opponent splice variants helps ensure high-fidelity transition of axonal responses from attraction to repulsion at the midline.  相似文献   

5.
Yang L  Bashaw GJ 《Neuron》2006,52(4):595-607
Son of sevenless (Sos) is a dual specificity guanine nucleotide exchange factor (GEF) that regulates both Ras and Rho family GTPases and thus is uniquely poised to integrate signals that affect both gene expression and cytoskeletal reorganization. Here, using genetics, biochemistry, and cell biology, we demonstrate that Sos is recruited to the plasma membrane, where it forms a ternary complex with the Roundabout receptor and the SH3-SH2 adaptor protein Dreadlocks (Dock) to regulate Rac-dependent cytoskeletal rearrangement in response to the Slit ligand. Intriguingly, the Ras and Rac-GEF activities of Sos can be uncoupled during Robo-mediated axon repulsion; Sos axon guidance function depends on its Rac-GEF activity, but not its Ras-GEF activity. These results provide in vivo evidence that the Ras and RhoGEF domains of Sos are separable signaling modules and support a model in which Robo recruits Sos to the membrane via Dock to activate Rac during midline repulsion.  相似文献   

6.
Semaphorin-4D (Sema4D), a member of class 4 membrane-bound Semaphorins, acts as a chemorepellant to the axons of retinal ganglion cells and hippocampal neurons. Plexin-B1, a neuronal Sema4D receptor, associates with either one of receptor tyrosine kinases, c-Met or ErbB2, to mediate Sema4D-signaling. In contrast to this significance, the involvement of protein tyrosine phosphatases in Semaphorin-signaling remains unknown. We here show that Src homology 2-containing protein-tyrosine phosphatase 2 (SHP2) participates in Sema4D-signaling. SHP2 was localized in the growth cones of chick embryonic retinal ganglion neurons. Phenylarsine oxide, a protein tyrosine phosphatase inhibitor, suppressed Sema4D-induced contractile response in COS-7 cells expressing Plexin-B1. Ectopic expression of a phosphatase-inactive mutant of SHP2 in the retinal ganglion cells attenuated Sema4D-induced growth cone collapse response. A SHP1/2 specific inhibitor, 8-hydroxy-7-(6-sulfonaphthalen-2-yl)diazenyl-quinoline-5-sulfonic acid (NSC-87877), also suppressed this collapse response. These results suggest that SHP2-mediated tyrosine dephosphorylation is an important step in Sema4D-induced axon repulsion.  相似文献   

7.
During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.  相似文献   

8.
Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.  相似文献   

9.
We have identified the S(MK) box as a conserved RNA motif in the 5' untranslated leader region of metK (SAM synthetase) genes in lactic acid bacteria, including Enterococcus, Streptococcus and Lactococcus species. This RNA element bound SAM in vitro, and binding of SAM caused an RNA structural rearrangement that resulted in sequestration of the Shine-Dalgarno (SD) sequence. Mutations that disrupted pairing between the SD region and a sequence complementary to the SD blocked SAM binding, whereas compensatory mutations that restored pairing restored SAM binding. The Enterococcus faecalis S(MK) box conferred translational repression of a lacZ reporter when cells were grown under conditions where SAM pools are elevated, and mutations that blocked SAM binding resulted in loss of repression, demonstrating that the S(MK) box is functional in vivo. The S(MK) box therefore represents a new SAM-binding riboswitch distinct from the previously identified S box RNAs.  相似文献   

10.
Drosophila ELAV is the founding member of an evolutionarily conserved family of RNA-binding proteins considered as key inducers of neuronal differentiation. Although several ELAV-specific targets have been identified, little is known about the role of elav during neural development. Here, we report a detailed characterization of the elav mutant commissural phenotype. The reduced number of commissures in elav mutant embryos is not due to loss or misspecification of neural cells but results from defects in commissural axon projections across the midline. We establish a causal relationship between the elav mutant commissural phenotype and a reduction in the expression of commissureless, a key component of the Robo/Slit growth cone repulsive signalling pathway. In the nerve cord of elav mutant embryos, comm mRNA expression is strongly reduced in neurons, but not in midline glial cells. Furthermore, specific expression of an elav transgene in posterior neurons of each segment of an elav mutant nerve cord restores comm mRNA expression in these cells, as well as the formation of posterior commissures. Finally, forced expression of comm in specific commissural neuron subsets rescues the midline crossing defects of these neurons in elav mutant embryos, further indicating that elav acts cell autonomously on comm expression.  相似文献   

11.
The key role of the Rho family GTPases Rac, Rho, and CDC42 in regulating the actin cytoskeleton is well established (Hall, A. 1998. Science. 279:509-514). Increasing evidence suggests that the Rho GTPases and their upstream positive regulators, guanine nucleotide exchange factors (GEFs), also play important roles in the control of growth cone guidance in the developing nervous system (Luo, L. 2000. Nat. Rev. Neurosci. 1:173-180; Dickson, B.J. 2001. Curr. Opin. Neurobiol. 11:103-110). Here, we present the identification and molecular characterization of a novel Dbl family Rho GEF, GEF64C, that promotes axon attraction to the central nervous system midline in the embryonic Drosophila nervous system. In sensitized genetic backgrounds, loss of GEF64C function causes a phenotype where too few axons cross the midline. In contrast, ectopic expression of GEF64C throughout the nervous system results in a phenotype in which far too many axons cross the midline, a phenotype reminiscent of loss of function mutations in the Roundabout (Robo) repulsive guidance receptor. Genetic analysis indicates that GEF64C expression can in fact overcome Robo repulsion. Surprisingly, evidence from genetic, biochemical, and cell culture experiments suggests that the promotion of axon attraction by GEF64C is dependent on the activation of Rho, but not Rac or Cdc42.  相似文献   

12.
Developing axons are guided to their targets by attractive and repulsive guidance cues. In the embryonic spinal cord, the floor plate chemoattractant Netrin-1 is required to guide commissural neuron axons to the midline. However, genetic evidence suggests that other chemoattractant(s) are also involved. We show that the morphogen Sonic hedgehog (Shh) can mimic the additional chemoattractant activity of the floor plate in vitro and can act directly as a chemoattractant on isolated axons. Cyclopamine-mediated inhibition of the Shh signaling mediator Smoothened (Smo) or conditional inactivation of Smo in commissural neurons indicate that Smo activity is important for the additional chemoattractant activity of the floor plate in vitro and for the normal projection of commissural axons to the floor plate in vivo. These results provide evidence that Shh, acting via Smo, is a midline-derived chemoattractant for commissural axons and show that a morphogen can also act as an axonal chemoattractant.  相似文献   

13.
Ferritin, a cytoplasmic protein critical in iron metabolism, displays iron-dependent regulation of its biosynthetic rate with no corresponding changes in mRNA levels. An iron-responsive element (IRE) has been identified in the 5'-untranslated region (UTR) of the human ferritin heavy chain mRNA which, when placed in the 5'-UTR of heterologous reporter genes, confers iron-dependent translational regulation to the hybrid mRNAs. However, whereas the biosynthetic rate of ferritin in response to changes in iron status exhibits a 30-80-fold range, the apparent ranges observed for reporter gene constructs utilizing chloramphenicol acetyltransferase assays or human growth hormone radioimmunoassays have been much less. A deletion and reconstitution study was undertaken to address the possibility that regions of the ferritin gene and mRNA other than the IRE may be necessary for the production of the full range of iron regulation. Data are presented that demonstrate that the IRE alone is capable of conferring iron-dependent translational regulation of biosynthesis to downstream encoded proteins that is both qualitatively and quantitatively similar to that observed with expression of ferritin itself. Thus, the complete range of iron-dependent translational regulation conferred by the IRE occurs independently of the presence of the ferritin promoter, other regions of the ferritin 5'-UTR, the ferritin coding region, and the ferritin 3'-UTR. Additionally, experiments addressing the translatability in vivo of various ferritin construct mRNAs support the theory that the IRE functions as the binding site for a translational repressor.  相似文献   

14.
The Drosophila Nanos protein is a localized repressor of hunchback mRNA translation in the early embryo, and is required for the establishment of the anterior-posterior body axis. Analysis of nanos mutants reveals that a small, evolutionarily conserved, C-terminal region is essential for Nanos function in vivo, while no other single portion of the Nanos protein is absolutely required. Within the C-terminal region are two unusual Cys-Cys-His-Cys (CCHC) motifs that are potential zinc-binding sites. Using absorption spectroscopy and NMR we demonstrate that the CCHC motifs each bind one equivalent of zinc with high affinity. nanos mutations disrupting metal binding at either of these two sites in vitro abolish Nanos translational repression activity in vivo. We show that full-length and C-terminal Nanos proteins bind to RNA in vitro with high affinity, but with little sequence specificity. Mutations affecting the hunchback mRNA target sites for Nanos-dependent translational repression were found to disrupt translational repression in vivo, but had little effect on Nanos RNA binding in vitro. Thus, the Nanos zinc domain does not specifically recognize target hunchback RNA sequences, but might interact with RNA in the context of a larger ribonucleoprotein complex.  相似文献   

15.
16.
The cerebellum comprises a medial domain, called the vermis, flanked by two lateral subdivisions, the cerebellar hemispheres. Normal development of the vermis involves fusion of two lateral primordia on the dorsal midline. We investigated how the cerebellum fuses on the midline by combining a study of mid/hindbrain cell movements in avian embryos with the analysis of cerebellar fusion in normal and mutant mouse embryos. We found that, in avian embryos, divergent cell movements originating from a restricted medial domain located at the mid/hindbrain boundary produce the roof plate of the mid/hindbrain domain. Cells migrating anteriorly from this region populate the caudal midbrain roof plate whereas cells migrating posteriorly populate the cerebellar roof plate. In addition, the adjacent paramedial isthmic neuroepithelium also migrates caudalward and participates in the formation of the cerebellar midline region. We also found that the paramedial isthmic territory produces two distinct structures. First, the late developing velum medullaris that intervenes between the vermis and the midbrain, and second, a midline domain upon which the cerebellum fuses. Elimination or overgrowth of this isthmic domain in Wnt1(sw/sw) and En1(+/Otx2lacZ) mutant mice, respectively, impair cerebellar midline fusion. Because the isthmus-derived midline cerebellar domain displays a distinct expression pattern of genes involved in BMP signaling, we propose that the isthmus-derived cells provide both a substratum and signals that are essential for cerebellar fusion.  相似文献   

17.
The conserved DCC ligand-receptor pair Netrin and Frazzled (Fra) has a well-established role in axon guidance. However, the specific sequence motifs required for orchestrating downstream signaling events are not well understood. Evidence from vertebrates suggests that P3 is important for transducing Netrin-mediated turning and outgrowth, whereas in C. elegans it was shown that the P1 and P2 conserved sequence motifs are required for a gain-of-function outgrowth response. Here, we demonstrate that Drosophila fra mutant embryos exhibit guidance defects in a specific subset of commissural axons and these defects can be rescued cell-autonomously by expressing wild-type Fra exclusively in these neurons. Furthermore, structure-function studies indicate that the conserved P3 motif (but not P1 or P2) is required for growth cone attraction at the Drosophila midline. Surprisingly, in contrast to vertebrate DCC, P3 does not mediate receptor self-association, and self-association is not sufficient to promote Fra-dependent attraction. We also show that in contrast to previous findings, the cytoplasmic domain of Fra is not required for axonal localization and that neuronal expression of a truncated Fra receptor lacking the entire cytoplasmic domain (Fra delta C) results in dose-dependent defects in commissural axon guidance. These findings represent the first systematic dissection of the cytoplasmic domains required for Fra-mediated axon attraction in the context of full-length receptors in an intact organism and provide important insights into attractive axon guidance at the midline.  相似文献   

18.
19.
Reverse signaling by ephrin-As upon binding EphAs controls axon guidance and mapping. Ephrin-As are GPI-anchored to the membrane, requiring that they complex with transmembrane proteins that transduce their signals. We show that the p75 neurotrophin receptor (NTR) serves this role in retinal axons. p75(NTR) and ephrin-A colocalize within caveolae along retinal axons and form a complex required for Fyn phosphorylation upon binding EphAs, activating a signaling pathway leading to cytoskeletal changes. In vitro, retinal axon repulsion to EphAs by ephrin-A reverse signaling requires p75(NTR), but repulsion to ephrin-As by EphA forward signaling does not. Constitutive and retina-specific p75(NTR) knockout mice have aberrant anterior shifts in retinal axon terminations in superior colliculus, consistent with diminished repellent activity mediated by graded ephrin-A reverse signaling induced by graded collicular EphAs. We conclude that p75(NTR) is a signaling partner for ephrin-As and the ephrin-A- p75(NTR) complex reverse signals to mediate axon repulsion required for guidance and mapping.  相似文献   

20.
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号