首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transesterification reaction of 0.25 M thymidine with 1 M divinyladipate in dimethylformamide (DMF) was catalyzed by an alkaline protease (5 mg ml–1) from Streptomyces sp. (20 units mg–1 min) at 30 °C for 7 days to give 5-O-vinyladipoyl thymidine (yield 77%) without formation of any by-products. Poly(vinyl alcohol) containing thymidine branches could be obtained by its free-radical polymerization.  相似文献   

2.
In vitro microrhizome production was obtained in turmeric (Curcuma longa Linn.). Freshly sprouted buds with small rhizome portions excised from stored mature rhizomes were cultured on semi-solid culture initiation medium –- MS basal medium + 0.88 M BAP (6-benzylaminopurine) + 0.92 M kinetin + 5% coconut water + 2% sucrose + 0.5% agar –- resulting in bud elongation. Multiple shoots were produced from these elongated buds by culturing in liquid shoot multiplication medium –- MS basal medium + 2.2 M BAP + 0.92 M kinetin + 5% coconut water + 2% sucrose –- at 25±1°C and 16-h light (at 11.7 mol m–2 s–1)/8-h dark cycles. Clumps of four to five multiple shoots/single shoots were used in various experiments. Cultures were incubated in the dark at 25±1°C. Half strength MS basal medium supplemented with 80 g l–1 sucrose was found to be optimal for microrhizome production. Cytokinin BAP had an inhibitory effect on microrhizome production. At the highest concentration of BAP tried (35.2 M) microrhizome production was totally inhibited. Microrhizome production depended on the size of the multiple shoots used. Microrhizomes produced were of a wide range in size (0.1–2.0 g) and, readily regenerated when isolated and cultured in vitro on culture initiation medium or shoot multiplication medium. Under in vivo conditions, small (0.1–0.4 g), medium (0.41–0.8 g) and big (>0.81 g) microrhizomes regenerated. Plantlets developed from big microrhizomes grew faster.  相似文献   

3.
Laboratory studies were performed to assess the importance of temperature on sporulation and infection by the aphid-pathogenic fungus Pandora neoaphidis (Remaudière and Hennebert) Humber. Numbers of primary conidia discharged from mycelium formulated as alginate granules and unformulated mycelial mats were assessed, as well as infection of the potato aphid, Macrosiphum euphorbiae (Thomas) (Homoptera, Hemiptera, Aphididae), using culture plugs as inoculum sources. Sporulation from experiments at constant temperatures indicated the optimum temperature range was 10–20°C for both mycelial preparations and there was no or very little sporulation at 30°C. Infection of aphids kept at 15°C was 34–50%, while infection at 25°C was 11–44%. At 20°C, 77–79% of aphids were infected. Under fluctuating temperature cycles, conidia numbers did not differ when mycelial preparations were maintained at 18–25°C compared with 18–20°C, but fewer conidia were recorded when preparations were exposed continuously to 18–30°C. Infections of inoculated aphids kept for varying numbers of days at 18–25°C varied between 24–47%, but only 3–32% of aphids were infected when exposed to a cycle of 18–30°C for various times. Unformulated mycelial mats of P. neoaphidis appear to be superior to forumlated alginate granules for use in experimental greenhouse and field trials, since temperature stability is similar for both materials but mycelial mats are much easier to produce.  相似文献   

4.
The combined effects of water activity (aw) and temperature on mycotoxin production by Penicilium commune (cyclopiazonic acid — CPA) and Aspergillus flavus (CPA and aflatoxins — AF) were studied on maize over a 14-day period using a statistical experimental design. Analysis of variance showed a highly significant interaction (P 0.001) between these factors and mycotoxin production. The minimum aw/temperature for CPA production (2264 ng g–1 P. commune, 709 ng g–1 A. flavus) was 0.90 aw/30 °C while greatest production (7678 ng g–1 P. commune, 1876 ng g–1 A. flavus) was produced at 0.98 aw/20 °C. Least AF (411 ng g–1) was produced at 0.90 aw/20 °C and most (3096 ng g–1) at 0.98 aw/30 °C.  相似文献   

5.
Changes in carbon isotope composition(13C) and leaf morphology associated withvegetative phase change were monitored in Metrosiderosexcelsa Sol. ex Gaertn. (family Myrtaceae). Plants of threeontogenetic states were used: juvenile seedlings, micropropagated plants in arejuvenated state, and reproductively mature plants bearing leaves with adultcharacteristics. The effects of temperature regime (32/24 °C,24/16 °C, and 16/8 °C day/night) and plantarchitecture (branched and single-stemmed plants) were studied in two separateexperiments. Although both juvenile and rejuvenated plants exhibited juvenileleaf morphology at the start of the experiments, there was no differencebetweenleaf 13C in these plants and that in adultplantsat this time (mean ca. –27%). Vegetative phase change occurred injuvenileand rejuvenated plants grown at 24/16 °C, and there was acorresponding increase in leaf 13C (from ca.–27% to –23%) in these two groups of plants. Leaf13C in adult plants remained relatively constant(ca. –26%) at 24/16 °C. There was little change in leaf13C in all plant states maintained at 32/24°C or 16/8 °C, and vegetative phase change didnot occur in juvenile and rejuvenated plants grown under these two temperatureregimes. Rejuvenated plants grown in a greenhouse also exhibited a progressivedevelopment of adult leaf morphology, accompanied by an increase in leaf13C, an effect that was more pronounced insingle-stemmed (from –26.4% to ca. –24%) than in branched plants. Itis suggested that increasing 13C in juvenile andrejuvenated plants undergoing phase change is a result of reduced sink strengthin single-stemmed plants, and to a lesser extent within each branch of branchedplants, causing reduced stomatal conductance and photosynthesis.  相似文献   

6.
Forty one strains ofRhizobium phaseoli were screened for the ability to multiply at high temperatures on yeast extract-mannitol agar. Most strains were tolerant of 30°C, eight strains were tolerant of 45°C and two of 47°C although the rate of multiplication was reduced at 45–47°C. The high temperature-tolerant strains were isolated from Kenyan soils and were fast-growing. Seven of the eight strains tolerant of 45–47°C lost their infectiveness after incubation at high temperature but four strains tolerant of 40°C remained infective after incubation at that temperature.Thirty six strains were resistant to 200 g ml–1 streptomycin sulphate and 29 strains to 200 g ml–1 spectinomycin dihydrochloride. Eight strains were resistant to both antibiotics each at 200 g ml–1. Two of the double-labelled antibiotic-resistant mutants lost their infectiveness onPhaseolus vulgaris. The response to acidity was unaltered and two of the mutants showed a decrease in temperature tolerance. The doublelabelled mutants were recoverable from two Kenyan soils.  相似文献   

7.
Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 M Pi min–1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.  相似文献   

8.
Phytotoxicity and inhibitory effects of the fusarial toxins fumonisin B1 (FB1) [m.p. 103–105 °C], fusaric acid [m.p. 106–107 °C], butenolide (4-acetamido-4-hydroxy-2-butenoic acid lactone) [116–117 °C], 9, 10-dihydroxyfusaric acid [m.p. 150–155 ° C], and moniliformin on chlorophyll synthesis in the aquatic macrophyte Lemna minor (duckweed) were examined. FB1 proved to be most active, reducing the growth of L. minor fronds and their ability to synthesize chlorophyll by 53% and 59%, respectively, at 0.7 g/ml. The growth rate of L. minor was reduced 59% by 6.7 g/ml fusaric acid, 62% by 66.7 g/ml butenolide, and 22% by 66.7 g/ml 9,10-dihydroxyfusaric acid. Moniliformin was the least phytotoxic to L. minor, with only a 16% suppression of growth rate and a 54% reduction in chlorophyll at 66.7 g/ml.The mention of firm names or trade products does not imply that they are endorsed or recommended by the US Department of Agriculture over other firms or similar products not mentioned.  相似文献   

9.
Biology and life table parameters of Brennandania lambi (Krczal) were studied at different temperatures while feeding on white mushroom (Agaricus bisporus) mycelium cultured on mushroom compost. The duration of egg and larva development, preoviposition and oviposition period, female longevity, and the time to 50% mortality declined as temperature increased from 16 to 28°C. The threshold temperature of development (female) was 9°C and the thermal constant for completion of development (female) was 195 day-degrees. At 16, 20, 24 and 28°C, the total fecundity (eggs/female) was 71, 67, 66 and 57, respectively and the daily fecundity rate (eggs/female/day) was 5.6, 8.7, 8.7 and 9.1, respectively. The sex ratio (female/male) ranged from 1.9 to 2.1 at 16–28°C. At 16, 20, 24 and 28°C, the intrinsic rate of natural increase (r m) was 0.11, 0.18, 0.22 and 0.27, respectively, and the population doubling time was 6.1, 3.9, 3.2 and 2.5 days, respectively. All life stages of the mite died when exposed to 35°C constant temperature for 24h, or to 32°C constant temperature for 12 days or to 31–35°C (average 32.9°C) ambient temperature for 4 days. Brennandania lambi completed development only when fed on Ag. bisporus mycelium growing on mushroom compost. It could not survive on mushroom mycelia of Auricularia auricula, Au. polytricha, Ganoderma lucidum, Hericium erinaceus, Lentinus edodes, Pleurotus ostreatus, P. sajor-caju and Tremella fuciformis.  相似文献   

10.
The optimal growth of Cistanche deserticola callus and formation of phenylethanoid glycosides (PeG) was at 25°C with light irradiation intensity of 24 mol m–2 s–1 on solidified B5 media supplemented with 0.5 mg 6-benzylaminopurine l–1, 10 mg gibberellin l–1, 800 mg casein hydrolysate l–1 and 20 g sucrose l–1. After 30 d culture, the biomass reached 15.5 g dry wt callus l–1 medium and its PEG content was 10.7% (w/w). The PeG content was 42%–127% higher than those in explants.  相似文献   

11.
He  Z.H.  Qin  J.G.  Wang  Y.  Jiang  H.  Wen  Z. 《Hydrobiologia》2001,457(1-3):25-37
Moina mongolica, 1.0-1.4 mm long and 0.8 mm wide, is an Old World euryhaline species. This paper reviewed the recent advances on its autecology, reproductive biology, feeding ecology and perspective as live food for marine fish larviculture. Salinity tolerance of this species ranges from 0.4–1.4 to 65.2–75.4. Within 2–50 salinity, Moina mongolica can complete its life cycle through parthenogenesis. The optimum temperature is between 25 °C and 28 °C, while it tolerates high temperature between 34.4 °C and 36.0 °C and lower temperature between 3.2 °C and 5.4 °C. The non-toxic level of unionised ammonia (24 h LC50) for M. mongolica is <2.6 mg NH3–N l–1. Juvenile individuals filter 2.37 ml d–1 and feed 9.45×106 algal cells d–1, while mature individuals filter 9.45 ml d–1 and consume 4.94×106 algal cells d–1. At 28 °C, M. mongolica reaches sex maturity in 4 d and gives birth once a day afterward; females carry 7.3 eggs brood–1 and spawn 2.8 times during their lifetime. A variety of food can be used for M. mongolica culture including unicellular algae, yeast and manure, but the best feeding regime is the combination of Nannochloropsis oculata and horse manure. Moina mongolica reproduces parthenogenetically during most lifetime, but resting eggs can be induced at temperature (16 °C) combined with food density at 2000–5000 N. oculata ml–1. The tolerance to low dissolved oxygen (0.14–0.93 mg l–1) and high ammonia makes it suitable for mass production. Biochemical analyses showed that the content of eicospantanoic acid (20:53) in M. mongolica accounts for 12.7% of total fatty acids, which is higher than other live food such as Artemia nauplii and rotifers. This cladoceran has the characteristics of wide salinity adaptation, rapid reproduction and ease of mass culture. The review highlights its potential as live food for marine fish larvae.  相似文献   

12.
The critical swimming velocity (Ucrit) of four California stream fishes, hardhead, Mylopharodon conocephalus, hitch, Lavinia exilicauda, Sacramento pikeminnow, Ptychocheilus grandis, and Sacramento sucker, Catostomus occidentalis was measured at 10, 15, and 20°C. Hardhead, Sacramento sucker, and Sacramento pikeminnow swimming performances tended to be lowest at 10°C, higher at 15°C, and then decreased or remained constant at 20°C. Hitch swimming performance was lower at 10°C than at 20°C. There were no significant differences among species at 10 or 15°C, although pikeminnow and hitch were ca. 20% slower than hardhead or sucker. At 20°C hardhead, Sacramento sucker, and Sacramento pikeminnow had remarkably similar Ucrit but hitch were significantly (by 11%) faster. We recommend that water diversion approach velocities should not exceed 0.3ms–1 for hitch (20–30cm total length) and 0.4ms–1 for hardhead, Sacramento pikeminnow, and Sacramento sucker (20–30cm TL).  相似文献   

13.
A novel inulinolytic microorganism, Xanthomonas sp. produced an endoinulinase, to be used for inulooligosaccharide (IOS) formation from inulin, at an activity of 11 units ml–1 (1.2 mg protein ml–1). The endoinulinase was optimally active at 45°C and pH 6.0. Batchwise production of IOS was carried out by the partially purified endoinulinase with a maximum yield of about 86% on a total sugar basis with 10 g inulin l–1. The major IOS components were DP (degree of polymerization) 5 and 6 with trace amount of smaller oligosaccharides.  相似文献   

14.
Lee SO  Kim CS  Cho SK  Choi HJ  Ji GE  Oh DK 《Biotechnology letters》2003,25(12):935-938
Conjugated linoleic acid (CLA) was produced at 300 mg l–1 after 24 h culture of Lactobacillus reuteri in de Man–Rogosa–Sharpe medium containing 0.9 g linoleic acid (LA) l–1 and 1.67% (v/v) Tween 80. CLA was mainly located in the extracellular space of the cells. Washed cells previously grown on LA were less active than unadapted washed cells in converting LA into CLA. Most of the CLA transformed by washed L. reuteri cells was located in cells or associated with cells. CLA production by washed L. reuteri cells was most efficient in conversion with 0.45 g LA l–1 at pH 9.5 and 37°C for 1 h.  相似文献   

15.
Growth of a temperature sensitive colonial mutant (cot 1) of Neurospora crassa was compared with a wild type strain. The hyphal growth unit (the ratio between mycelial length and number of branches) of the wild type was not appreciably altered by temperature and there was a direct relationship between the specific growth rate () of these mycelia and their mean hyphal extension rate (E). The specific growth rate of cot 1 increased by about the same relative amount as the wild type between 15° and 30°C. Cot 1 grew and branched normally at 15° and 25°C but at 30°C the hyphal growth unit and mean hyphal extension rate of the mutant mycelia were reduced. Thus, between 15–30°C the ratio, E/ was constant for the wild type but not for cot 1.The effect of temperature and temperature shifts on extension zone length (Z), extension zone expansion time (Z i ) and branching of leading hyphae of mature colonies were also studies.It is suggested that branching is governed by a mechanism which regulates the linear growth rate of hyphae; the cot 1 mutation may have a direct effect on wall extension or affect linear growth rate indirectly due to an influence on the transport of precursors to the tip.  相似文献   

16.
Plants of Solanum tuberosum L. potato do not cold acclimate when exposed to low temperature such as 5°C, day/night. When ABA (45 M) was added to the culture medium, stem-cultured plantlets of S. tuberosum, cv. Red Pontiac, either grown at 20°C/15°C, day/night, or at 5°C, increased in cold hardiness from –2°C (killing temperature) to –4.5°C. The increase in cold hardiness could be inhibited in both temperature regimes if cycloheximide (70 M) was added to the culture medium at the inception of ABA treatment. Cycloheximide did not inhibit cold hardiness development, however, when it was added to the culture medium 3 days after ABA treatment.When pot-grown plants were foliar sprayed with mefluidide (50 M), ABA content increased from 10 nmol to 30 nmol g–1 dry weight and plants increased in cold hardiness from –2°C to about –3.5°C. The increases in free ABA and cold hardiness occurred only in plants grown at 20°C/15°C; neither ABA nor cold hardiness increased in plants grown at 5°C.The results suggest that an increase in ABA and a subsequent de novo synthesis of proteins are required for the development of cold hardiness in S. tuberosum regardless of temperature regime, and that the inability to synthesize ABA at low temperature, rather than protein synthesis, appears to be the reason why S. tuberosum does not cold acclimate.  相似文献   

17.
Peroxidase-catalyzed oxidation of o-phenylene diamine (OPD) was competitively inhibited by trimethylhydroquinone (TMHQ), 4-tert-butylpyrocatechol (InH5), and 4,6-di-tert-butyl-3-sulfanyl-1,2-dihydroxybenzene (InH6). InH6 was the most efficient inhibitor (K i = 11 M at 20°C in 0.015 M phosphate–citrate buffer, pH 6.0). The effects of InH5 and InH6 were not preceded by periods of induction of OPD oxidation products (contrary to TMHQ). Peroxidase-catalyzed oxidation of tetramethylbenzidine (TMB) was noncompetitively inhibited by InH6 and 3-(2-hydroxyethylthio)-4,6-di-tert-butylpyrocatechol (InH4), whereas o-aminophenol acted as a mixed-type inhibitor. The effects of all three inhibitors were preceded by an induction period, during which TMB oxidation products were formed. Again, InH6 was the most efficient inhibitor (K i = 16 M at 20°C in 0.015 M phosphate–citrate buffer supplemented with 5% ethanol, pH 6.0). Judging by the characteristics of the inhibitors taken in aggregate, it is advisable to use the pairs OPD–InH5 and OPD–InH6 in systems for testing the total antioxidant activity of human biological fluids.  相似文献   

18.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

19.
The zonation and structure of phototrophic microbial mats were studied along two thermal gradients in sulfide-rich hot springs of southwest Iceland. The green, filamentous bacteriumChloroflexus and the unicellular, high-temperature form (HTF) ofMastigocladus formed mats growing up to a temperature limit of 62–66°C. The dominant phototrophs wereChloroflexus sp.,Mastigocladus laminosus, andPhormidium laminosum, respectively, at the three temperature intervals: >60°C, 60°C to 55–50°C, and <55–50°C. AChloroflexus mat growing at 60°C under 60M H2S was anoxic in the light with the exception of a 0.5 mm thick band of HTFMastigocladus which produced oxygen. The oxygenic photosynthesis of these H2S-sensitive cyanobacteria was probably dependent on a preceding sulfide depletion by the anoxygenicChloroflexus. Measurements of spectral radiance gradients with a fiberoptic microprobe showed maximum light attenuation by carotenoids and bacteriochlorophyllC. AM. laminosus mat growing at 52°C was oxic throughout and showed maximum light attenuation by carotenoids, chlorophyllA, and phycocyanin, but no detectable phycoerythrocyanin absorption.  相似文献   

20.
A 23 full factorial design was used to study the influence of different experimental variables, namely wort gravity, fermentation temperature and nutrient supplementation, on ethanol productivity from high gravity wort fermentation by Saccharomyces cerevisiae (lager strain), under pilot plant conditions. The highest ethanol productivity (0.69 g l–1 h–1) was obtained at 20°P [°P is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20°C], 15°C, with the addition of 0.8% (w/v) yeast extract, 24 mg l–1 ergosterol and 0.24% (v/v) Tween 80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号