首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rab11 is a GTPase that regulates endosomal trafficking to apical plasma membrane domains in polarized epithelial cells. We report the identification of a novel Rab11 effector, Rip11. Rip11 is enriched in polarized epithelial cells where, like Rab11, it is localized to subapical recycling endosomes (ARE) and the apical plasma membrane. Using various transport assays, we demonstrate that Rip11 is important for protein trafficking from ARE to the apical plasma membrane. Rip11 is recruited to ARE by binding to Rab11 as well as through a Mg(2+)-dependent interaction of its C2 domain with neutral phospholipids. The association of Rip11 with membranes is regulated by a phosphorylation and dephosphorylation cycle. We propose a model whereby the Rab11/Rip 11 complex regulates vesicle targeting from the ARE.  相似文献   

2.
Sensory neuron terminal differentiation tasks apical secretory transport with delivery of abundant biosynthetic traffic to the growing sensory membrane. We recently showed Drosophila Rab11 is essential for rhodopsin transport in developing photoreceptors and asked here if myosin V and the Drosophila Rab11 interacting protein, dRip11, also participate in secretory transport. Reduction of either protein impaired rhodopsin transport, stunting rhabdomere growth and promoting accumulation of cytoplasmic rhodopsin. MyoV-reduced photoreceptors also developed ectopic rhabdomeres inappropriately located in basolateral membrane, indicating a role for MyoV in photoreceptor polarity. Binary yeast two hybrids and in vitro protein-protein interaction predict a ternary complex assembled by independent dRip11 and MyoV binding to Rab11. We propose this complex delivers morphogenic secretory traffic along polarized actin filaments of the subcortical terminal web to the exocytic plasma membrane target, the rhabdomere base. A protein trio conserved across eukaryotes thus mediates normal, in vivo sensory neuron morphogenesis.  相似文献   

3.
A mutation in the small GTPase Rab38 gives rise to the mouse coat color phenotype "chocolate" (cht), implicating Rab38 in the regulation of melanogenesis. However, its role remains poorly characterized. We report that cht Rab38(G19V) is inactive and that the nearly normal pigmentation in cht melanocytes results from functional compensation by the closely related Rab32. In cht cells treated with Rab32-specific small interfering RNA, a dramatic loss of pigmentation is observed. In addition to mature melanosomes, Rab38 and Rab32 localize to perinuclear vesicles carrying tyrosinase and tyrosinase-related protein 1, consistent with a role in the intracellular sorting of these proteins. In Rab38/Rab32-deficient cells, tyrosinase appears to be mistargeted and degraded after exit from the trans-Golgi network (TGN). This suggests that Rab38 and Rab32 regulate a critical step in the trafficking of melanogenic enzymes, in particular, tyrosinase, from the TGN to melanosomes. This work identifies a key role for the Rab38/Rab32 subfamily of Rab proteins in the biogenesis of melanosomes and potentially other lysosome-related organelles.  相似文献   

4.
Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl‐phosphatidylinositol (GPI)‐anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI‐anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI‐anchored surface proteins. We proposed a two‐step model for VSG turnover involving release of VSG‐containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.   相似文献   

5.
Rab11 is a small GTPase that regulates several aspects of vesicular trafficking. Here, we show that Rab11 accumulates at the cleavage furrow of Drosophila spermatocytes and that it is essential for cytokinesis. Mutant spermatocytes form regular actomyosin rings, but these rings fail to constrict to completion, leading to cytokinesis failures. rab11 spermatocytes also exhibit an abnormal accumulation of Golgi-derived vesicles at the telophase equator, suggesting a defect in membrane-vesicle fusion. These cytokinesis phenotypes are identical to those elicited by mutations in giotto (gio) and four wheel drive (fwd) that encode a phosphatidylinositol transfer protein and a phosphatidylinositol 4-kinase, respectively. Double mutant analysis and immunostaining for Gio and Rab11 indicated that gio, fwd, and rab11 function in the same cytokinetic pathway, with Gio and Fwd acting upstream of Rab11. We propose that Gio and Fwd mediate Rab11 recruitment at the cleavage furrow and that Rab11 facilitates targeted membrane delivery to the advancing furrow.  相似文献   

6.
Five different, well-characterized mutants of the R1–6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1–6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1–6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1–6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1–6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1–6 rhodopsin in the nina E mutants. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
The Drosophila melanogaster body axes are defined by the precise localization and the restriction of molecular determinants in the oocyte. Polarization of the oocyte during oogenesis is vital for this process. The directed traffic of membranes and proteins is a crucial component of polarity establishment in various cell types and organisms. Here, we investigate the role of the small GTPase Rab6 in the organization of the egg chamber and in asymmetric determinant localization during oogenesis. We show that exocytosis is affected in rab6-null egg chambers, which display a loss of nurse cell plasma membranes. Rab6 is also required for the polarization of the oocyte microtubule cytoskeleton and for the posterior localization of oskar mRNA. We show that, in vivo, Rab6 is found in a complex with Bicaudal-D, and that Rab6 and Bicaudal-D cooperate in oskar mRNA localization. Thus, during Drosophila oogenesis, Rab6-dependent membrane trafficking is doubly required; first, for the general organization and growth of the egg chamber, and second, more specifically, for the polarization of the microtubule cytoskeleton and localization of oskar mRNA. These findings highlight the central role of vesicular trafficking in the establishment of polarity and in determinant localization in Drosophila.  相似文献   

8.
Five different, well-characterized mutants of the R1-6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1-6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1-6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1-6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1-6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1-6 rhodopsin in the ninaE mutants.  相似文献   

9.
Cao J  Li Y  Xia W  Reddig K  Hu W  Xie W  Li HS  Han J 《The EMBO journal》2011,30(18):3701-3713
Oligosaccharide chains of newly synthesized membrane receptors are trimmed and modified to optimize their trafficking and/or signalling before delivery to the cell surface. For most membrane receptors, the functional significance of oligosaccharide chain modification is unknown. During the maturation of Rh1 rhodopsin, a Drosophila light receptor, the oligosaccharide chain is trimmed extensively. Neither the functional significance of this modification nor the enzymes mediating this process are known. Here, we identify a dmppe (Drosophila metallophosphoesterase) mutant with incomplete deglycosylation of Rh1, and show that the retained oligosaccharide chain does not affect Rh1 localization or signalling. The incomplete deglycosylation, however, renders Rh1 more sensitive to endocytic degradation, and causes morphological and functional defects in photoreceptors of aged dmppe flies. We further demonstrate that the dMPPE protein functions as an Mn(2+)/Zn(2+)-dependent phosphoesterase and mediates in vivo dephosphorylation of α-Man-II. Most importantly, the dephosphorylated α-Man-II is required for the removal of the Rh1 oligosaccharide chain. These observations suggest that the glycosylation status of membrane proteins is controlled through phosphorylation/dephosphorylation, and that MPPE acts as the phosphoesterase in this regulation.  相似文献   

10.
The ATP binding cassette, class A (ABCA) proteins are homologous polytopic transmembrane transporters that function as lipid pumps at distinct subcellular sites in a variety of cells. Located within the N terminus of these transporters, there exists a highly conserved xLxxKN motif of unknown function. To define its role, human ABCA3 was employed as a primary model representing ABCA transporters, while mouse ABCA1 was utilized to support major findings. Transfection studies showed colocalization of both transporters with surfactant protein C (SP-C), a marker peptide for successful protein targeting to lysosomal-like organelles. In contrast, alanine mutation of xLxxKN resulted in endoplasmic reticulum retention. As proof of principle, swapping xLxxKN for the known lysosomal targeting motif of SP-C resulted in post-Golgi targeting of the SP-C chimera. However, these products failed to reach their terminal processing compartments, suggesting that the xLxxKN motif only serves as a Golgi exit signal. We propose a model whereby an N-terminal signal sequence, xLxxKN, directs ABCA transporters to a post-Golgi vesicular sorting station where additional signals may be required for selective delivery of individual transporters to final subcellular destinations.  相似文献   

11.
Pollen tube growth is a polarized growth process whereby the tip-growing tubes elongate within the female reproductive tissues to deliver sperm cells to the ovules for fertilization. Efficient and regulated membrane trafficking activity incorporates membrane and deposits cell wall molecules at the tube apex and is believed to underlie rapid and focused growth at the pollen tube tip. Rab GTPases, key regulators of membrane trafficking, are candidates for important roles in regulating pollen tube growth. We show that a green fluorescent protein-tagged Nicotiana tabacum pollen-expressed Rab11b is localized predominantly to an inverted cone-shaped region in the pollen tube tip that is almost exclusively occupied by transport vesicles. Altering Rab11 activity by expressing either a constitutive active or a dominant negative variant of Rab11b in pollen resulted in reduced tube growth rate, meandering pollen tubes, and reduced male fertility. These mutant GTPases also inhibited targeting of exocytic and recycled vesicles to the pollen tube inverted cone region and compromised the delivery of secretory and cell wall proteins to the extracellular matrix. Properly regulated Rab11 GTPase activity is therefore essential for tip-focused membrane trafficking and growth at the pollen tube apex and is pivotal to reproductive success.  相似文献   

12.
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico‐basal cell polarity and promotes cell migration. Here we review Rab35’s known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35‐dependent membrane trafficking in cancer progression.   相似文献   

13.
A Drosophila mutant (ninaAP228) that is low in rhodopsin concentration but identical to the wild-type fly in photoreceptor morphology has been isolated. R1-6 photoreceptors of the mutant differ from those of wild type in that (a) the prolonged depolarizing afterpotential (PDA) is absent, (b) concentrations of rhodopsin and opsin are substantially reduced, and (c) intramembrane particle density in the membranes of the rhabdomeres is low. Each of these traits is mimicked by depriving wild- type flies of vitamin A. The ninaAP228 mutation differs from vitamin A deprivation in that in the mutant (a) the rhabdomeric membrane particle density is reduced only in the R1-6 photoreceptors and not in R7 or R8, (b) the PDA can be elicited from the R7 photoreceptors, and (c) photoconversion of R1-6 rhodopsin to metarhodopsin by ultraviolet (UV) light is considerably more efficient than in vitamin A-deprived flies. The absorption properties of the mutant rhodopsin in the R1-6 photoreceptors appear to be identical to those of wild type as judged from rhodopsin difference spectra. The results suggest that the mutation affects the opsin, rather than the chromophore, component of rhodopsin molecules in the R1-6 photoreceptors. The interaction between the chromophore and R1-6 opsin, however, appears to be normal.  相似文献   

14.
The Drosophila embryonic body plan is specified by asymmetries that arise in the oocyte during oogenesis. These asymmetries are apparent in the subcellular distribution of key mRNAs and proteins and in the organization of the microtubule cytoskeleton. We present evidence that the Drosophila oocyte also contains important asymmetries in its membrane trafficking pathways. Specifically, we show that alpha-adaptin and Rab11, which function critically in the endocytic pathways of all previously examined animal cells, are localized to neighboring compartments at the posterior pole of stage 8-10 oocytes. Rab11 and alpha-adaptin localization occurs in the absence of a polarized microtubule cytoskeleton, i.e. in grk null mutants, but is later reinforced and/or refined by Osk, the localization of which is microtubule dependent. Analyses of germline clones of a rab11 partial loss-of-function mutation reveal a requirement for Rab11 in endocytic recycling and in the organization of posterior membrane compartments. Such analyses also reveal a requirement for Rab11 in the organization of microtubule plus ends and osk mRNA localization and translation. We propose that microtubule plus ends and, possibly, translation factors for osk mRNA are anchored to posterior membrane compartments that are defined by Rab11-mediated trafficking and reinforced by Rab11-Osk interactions.  相似文献   

15.
Rab27A was the only Rab protein whose dysfunction was found to cause human immunodeficiency. Since Griscelli syndrome patients (i.e., Rab27A-deficient) exhibit silvery hair color (i.e., pigmentary dilution) in addition to loss of cytotoxic killing activity by cytotoxic T lymphocytes, and Rab27A protein is expressed in a wide variety of secretory cells, Rab27A (or its closely related isoform Rab27B) has been implicated in the regulation of different types of membrane trafficking, including melanosome transport and various regulated secretion events. How does Rab27 protein regulate these different types of membrane trafficking? Recent discoveries of three different families of Rab27-binding proteins (a total of eleven distinct proteins) have supplied an important clue to the answer of this question: different types of Rab27 effectors function in different cell types. In this review I describe the literature on the identification of Rab27-binding proteins (i.e., the synaptotagmin-like protein (Slp) family with tandem C2 Ca(2+)-binding motifs, the Slac2 family without any C2 motifs, and Munc13-4, a putative priming factor for exocytosis) and the current state of our understanding of the molecular mechanism of the Rab27-dependent membrane trafficking.  相似文献   

16.
The formation of an epithelial tube is a fundamental process for organogenesis. During Drosophila embryonic salivary gland (SG) invagination, Folded gastrulation (Fog)-dependent Rho-associated kinase (Rok) promotes contractile apical myosin formation to drive apical constriction. Microtubules (MTs) are also crucial for this process and are required for forming and maintaining apicomedial myosin. However, the underlying mechanism that coordinates actomyosin and MT networks still remains elusive. Here, we show that MT-dependent intracellular trafficking regulates apical constriction during SG invagination. Key components involved in protein trafficking, such as Rab11 and Nuclear fallout (Nuf), are apically enriched near the SG invagination pit in a MT-dependent manner. Disruption of the MT networks or knockdown of Rab11 impairs apicomedial myosin formation and apical constriction. We show that MTs and Rab11 are required for apical enrichment of the Fog ligand and the continuous distribution of the apical determinant protein Crumbs (Crb) and the key adherens junction protein E-Cadherin (E-Cad) along junctions. Targeted knockdown of crb or E-Cad in the SG disrupts apical myosin networks and results in apical constriction defects. Our data suggest a role of MT- and Rab11-dependent intracellular trafficking in regulating actomyosin networks and cell junctions to coordinate cell behaviors during tubular organ formation.  相似文献   

17.
Previous investigations in several systems have demonstratedthat Rab3 family members redistribute to soluble fractions on fusion ofsecretory granules with target plasma membranes. Rab proteins are thenrecycled back onto mature secretory vesicles after reinternalization ofthe membrane. Although this cycle is well established for Rab3, farless is known about redistribution of other Rab proteins during vesiclefusion and recycling. In the gastric parietal cell, Rab11a isassociated with H-K-ATPase-containing tubulovesicles, which fuse withthe apical plasma membrane (secretory canaliculus) in response toagonists such as histamine. We have analyzed distribution of Rab11a andother tubulovesicle proteins in resting and histamine-stimulated rabbitparietal cells. Stimulation of isolated gastric glands in the presenceof 100 µM histamine and 100 µM 3-isobutyl-1-methylxanthine did notcause a significant increase in soluble Rab11a. H-K-ATPase, Rab11a,Rab25, syntaxin 3, and SCAMPs increased immunoreactivity instimulus-associated vesicles prepared from rabbits treated withhistamine compared with those from ranitidine-treated animals. Thelarge GTPase dynamin was found in both vesicle preparations, but therewas no change in amount of immunoreactivity. Immunofluorescencestaining of resting and histamine-stimulated primary cultures ofparietal cells demonstrated redistribution of H-K-ATPase and Rab11a to F-actin-rich canalicular membranes. Dynamin was present on canalicular membranes in resting and stimulated cells. These results indicate thatRab11a does not cycle off the membrane during the process oftubulovesicle fusion with the secretory canaliculus. Thus Rab11a mayremain associated with recycling apical membrane vesicle populations.

  相似文献   

18.
Polarized epithelial cells maintain the polarized distribution of basolateral and apical membrane proteins through a process of receptor-mediated endocytosis, sorting, and then recycling to the appropriate membrane domain. We have previously shown that the small GTP-binding proteins, Rab11a and Rab25, are associated with the apical recycling system of Madin-Darby canine kidney cells. Here we have utilized inducible expression of wild-type, dominant negative, and constitutively active mutants to directly compare the functions of Rab25 and Rab11a in postendocytic vesicular transport. We found that a Rab11a mutant deficient in GTP binding, Rab11aS25N, potently inhibited both transcytosis and apical recycling yet failed to inhibit transferrin recycling. Similarly, expression of either wild type Rab25 or the active mutant Rab25S21V inhibited both apical recycling and transcytosis of IgA by greater than 50% but had no effect on basolateral recycling of transferrin. Interestingly, the GTPase-deficient mutant Rab11aS20V inhibited basolateral to apical transcytosis of IgA, but had no effect on either apical or basolateral recycling. These results indicate that neither Rab11a nor Rab25 function in the basolateral recycling of transferrin in polarized Madin-Darby canine kidney cells cells, consistent with recent morphological observations by others. Thus, transferrin receptors must be recycled to the plasma membrane prior to sorting of apically directed cargoes into Rab11a/Rab25-positive apical recycling endosomes.  相似文献   

19.
Newly synthesized membrane proteins are sorted in the trans-Golgi network (TGN) on the basis of sorting signals carried in their cytoplasmic domains and delivered to their final destinations in the secretory and endocytic pathways. Although previous studies have suggested the involvement of early endosomes in the biosynthetic pathway of transmembrane proteins, the precise trafficking routes followed by the newly synthesized plasma membrane proteins, such as transferrin receptors (TfRs), after exit from the TGN remain unclear. In this report, first, we demonstrated the advantages of photoactivating PA-GFP, a variant of the Aequorea victoria green fluorescent protein (GFP), with multiphoton laser light rather than single-photon laser light, in terms of photoactivation efficiency and spatial resolution. We then applied the multiphoton photoactivation technique to selectively photoactivate the TfR tagged with PA-GFP (PA-GFP-TfR) at the TGN, and monitored the movement of the photoactivated PA-GFP-TfR in live cells. We observed that the PA-GFP-TfR photoactivated at the TGN are transported to the Tfn(+)EEA1(+) endosomal compartments after exiting the TGN. These data support the notion that early endosomes can serve as a sorting station for not only internalized plasma membrane proteins in the endocytic pathway but also newly synthesized membrane proteins in the post-Golgi secretory pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号