首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The guinea pig lateral superior olive was examined immunocytochemically using antisera against enkephalin and choline acetyltransferase sequentially on the same sections. A colocalization of choline acetyltransferase-like and enkephalin-like immunoreactivities was found in cells of the lateral superior olive that give rise to the lateral system of olivocochlear efferents. Only choline acetyltransferase-like immunoreactivity was observed in the group of olivary nuclei that give rise to the medial group of olivocochlear fibers.  相似文献   

2.
The serotoninergic innervation of the inferior olivary complex of the rat was studied using a specific immunohistochemical technique. Fibers and varicosities positive for serotonin were present throughout the nucleus. The densest varicosities were found in the lateral portion of the dorsal accessory olive and the caudal portion of the medial accessory olive. The rostral medial accessory olive and the principal olive were sparsely populated with labeled elements. Ultrastructurally, labeled profiles were found in close opposition to small dendrites and to olivary cell bodies, but they did not display any synaptic specialization. Labeled perikaria were found in the periolivary regions, some of them located laterally to the olivary complex are responsible for the serotoninergic innervation of the dorsal accessory olive; some others located dorsally and medially in the nucleus raphe obscurus and raphe pallidus were responsible for the innervation of the medial accessory olive.  相似文献   

3.
Climbing fiber afferents to the cerebellum, from the inferior olivary complex, have a powerful excitatory effect on Purkinje cells. Changes in the responsiveness of olivary neurons to their afferent inputs, leading to changes in the firing rate or pattern of activation in climbing fibers, have a significant effect on the activation of cerebellar neurons and ultimately on cerebellar function. Several neuropeptides have been localized in both varicosities and cell bodies of the mouse inferior olivary complex, one of which, calcitonin gene related peptide (CGRP), has been shown to modulate the activity of olivary neurons. The purpose of the present study was to investigate the synaptic relationships of CGRP-containing components of the caudal medial accessory olive and the principal olive of adult mice, using immunohistochemistry and electron microscopy. The vast majority of immunoreactive profiles were dendrites and dendritic spines within and outside the glial boundaries of synaptic glomeruli (clusters). Both received synaptic inputs from non-CGRP labeled axon terminals. CGRP was also present within the somata of olivary neurons as well as in profiles that had cytological characteristics of axons, some of which were filled with synaptic vesicles. These swellings infrequently formed synaptic contacts. At the LM level, few, if any, CGRP-immunoreactive climbing fibers, were seen, suggesting that CGRP is compartmentalized within the somata and dendrites of olivary neurons and is not transported to their axon terminals. Thus, in addition to previously identified extrinsic sources of CGRP, the widespread distribution of CGRP within olivary somata and dendrites identifies an intrinsic source of the peptide suggesting the possibility of dendritic release and a subsequent autocrine or paracrine function for this peptide within olivary circuits.  相似文献   

4.
Slices of inferior olive (IO) and cerebellum were co-cultured for several weeks by means of the roller tube technique. Recordings were carried out intracellularly from Purkinje cells (PCs) which were identified morphologically by intracellular injection of the fluorescent dye Lucifer yellow, or by immunohistochemical stainings with antibodies raised against the 28 kD Ca2+-binding protein calbindin. Following stimulation of olivary tissue, an all-or-none full complex spike response was recorded in some PCs consisting of a fast rising spike followed by a depolarizing potential. In other PCs, graded stimulation of the olivary explant induced synaptic potentials which were characterized by step-wise variation in their amplitude and resembled the ones occurring spontaneously. In contrast, only smoothly graded synaptic potentials were observed in cerebellar mono-cultures. These results indicate that some of the PCs in olivo-cerebellar co-cultures are innervated by several olivary neurons.  相似文献   

5.
Local microinjections of harmaline evoked sustained rhythmic activity in the inferior olive of decerebrate cats. Harmaline appears to exert its action within restricted areas of the inferior olivary complex: the caudal halves of the dorsal and medial accessory nuclei. Since the highly synchronized activity generated by harmaline can be attributed to extensive electrotonic coupling between olivary neurones, it is postulated that such a coupling mechanism is weaker if not absent in the principal olive and in the rostral parts of the accessory nuclei.  相似文献   

6.
During development, inferior olivary axons cross the floor plate and project from the caudal to the rostral hindbrain, whence they grow into the cerebellar plate. We have investigated the axon guidance signals involved in the formation of this projection in vitro. When the cerebellar plate was grafted ectopically along the margin of the hindbrain in organotypic cultures, inferior olivary axons could pathfind to the ectopic cerebellum, establishing a topographically normal projection. Following rostrocaudal reversal of a region of tissue in the axon pathway between the inferior olive and the cerebellum, olivary axons still navigated towards the cerebellum. Moreover, olivary axons could cross a bridging tissue explant (spinal cord) to reach a cerebellar explant. In collagen gel cultures of inferior olive explants, olivary axon outgrowth increased significantly in the presence of cerebellar explants and axons deflected towards the cerebellar tissue. These results show that the cerebellum is a source of diffusible axon guidance signals for olivary axons. We also found that, in organotypic cultures, olivary axons which had crossed the floor plate showed an increased tendency to respond to cerebellar cues. Taken together, these results indicate that the cerebellum is the source of cues that are chemoattractant and growth-promoting for inferior olivary axons; prior exposure to the floor plate increases responsiveness to these cues.  相似文献   

7.
The survival of inferior olive neurons is dependent on contact with cerebellar Purkinje cells. There is evidence that this dependence changes with time. Because inferior olivary axons, called climbing fibers, already show significant topographical ordering in cerebellar target zones during late embryogenesis in mice, the question arises as to whether olive neurons are dependent on target Purkinje cells for their survival at this early age. To better characterize this issue, inferior olive development was studied in two transgenic mouse mutants, wnt-1 and L7ADT, with embryonic and early postnatal loss of cerebellar target cells, respectively, and compared to that in the well-studied mutant, Lurcher. Morphological criteria as well as quantitative measures of apoptosis were considered in this developmental analysis. Survival of inferior olive neurons is observed to be independent of Purkinje cells throughout embryogenesis, but dependence begins immediately at birth in both wild types and mutants. Thereafter, wild types and mutants show a rapid increase in olive cell apoptosis, with a peak at postnatal day 4, followed by a period of low-level, but significant, apoptosis that continues to at least postnatal day 11; the main difference is that apoptosis is quantitatively enhanced in the mutants compared to wild types. The multiphasic course of these effects roughly parallels the known phases of climbing fiber synaptogenesis. In addition, despite significant temporal differences among the mutants with respect to absolute numbers of dying cells, there are common spatial features suggestive of distinct intrinsic programs linking different olivary subnuclei to their targets.  相似文献   

8.
The inferior olive of the cat has, with fluorescence histochemistry, been shown to receive a rich serotoninergic innervation. The distribution of this innervation agrees with the topography of spinal afferent termination as well as the olivo-cerebellar climbing fiber projection. This indicates that different olivary compartments are under different serotoninergic influence. The serotoninergic innervation of the dorsal accessory nucleus (DAO) of the inferior olive of the rat has been identified with electron microscopic radioautography after labelling with 3H-serotonin. The serotoninergic varicosities contain microcanaliculi, tubular-vesicular organelles and large granular vesicles. Few of the serotoninergic varicosities engage in typical synaptic junctions. However, non-junctional varicosities often display other ultrastructural indications of polarity and directed transmitted release. Electrophysiological results indicate that the harmaline-induced tremor, as well as the tremor component of the "serotonin-syndrome", depends on the serotoninergic innervation of the inferior olive. Thus, the sensitivity of different olivary compartments to the induction of rhythmic, synchronous activity by harmaline parallels the distribution of serotoninergic innervation. Neurotoxic destruction of the serotoninergic innervation leads to decreased sensitivity to harmaline. Further, the serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine, as well as monoamine oxidase inhibition + L-tryptophan loading, leads to rhythmic mass climbing fiber activity in the cerebellum and whole body tremor. A neuromodulatory effect of serotonin on the olivary action potential mechanisms is proposed.  相似文献   

9.
The survival of inferior olive neurons is dependent on contact with cerebellar Purkinje cells. There is evidence that this dependence changes with time. Because inferior olivary axons, called climbing fibers, already show significant topographical ordering in cerebellar target zones during late embryogenesis in mice, the question arises as to whether olive neurons are dependent on target Purkinje cells for their survival at this early age. To better characterize this issue, inferior olive development was studied in two transgenic mouse mutants, wnt‐1 and L7ADT, with embryonic and early postnatal loss of cerebellar target cells, respectively, and compared to that in the well‐studied mutant, Lurcher. Morphological criteria as well as quantitative measures of apoptosis were considered in this developmental analysis. Survival of inferior olive neurons is observed to be independent of Purkinje cells throughout embryogenesis, but dependence begins immediately at birth in both wild types and mutants. Thereafter, wild types and mutants show a rapid increase in olive cell apoptosis, with a peak at postnatal day 4, followed by a period of low‐level, but significant, apoptosis that continues to at least postnatal day 11; the main difference is that apoptosis is quantitatively enhanced in the mutants compared to wild types. The multiphasic course of these effects roughly parallels the known phases of climbing fiber synaptogenesis. In addition, despite significant temporal differences among the mutants with respect to absolute numbers of dying cells, there are common spatial features suggestive of distinct intrinsic programs linking different olivary subnuclei to their targets. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 18–30, 2000  相似文献   

10.
11.
Slices of inferior olive (IO) and cerebellum were co-cultured for several weeks by means of the roller tube technique. Recordings were carried out intracellularly from Purkinje cells (PCs) which were identified morphologically by intracellular injection of the fluorescent dye Lucifer yellow, or by immunohistochemical stainings with antibodies raised against the 28 kD Ca(2+)-binding protein calbindin. Following stimulation of olivary tissue, an all-or-none full complex spike response was recorded in some PCs consisting of a fast rising spike followed by a depolarizing potential. In other PCs, graded stimulation of the olivary explant induced synaptic potentials which were characterized by step-wise variation in their amplitude and resembled the ones occurring spontaneously. In contrast, only smoothly graded synaptic potentials were observed in cerebellar mono-cultures. These results indicate that some of the PCs in olivo-cerebellar co-cultures are innervated by several olivary neurons.  相似文献   

12.
Quantitative measurements were made of choline acetyltransferase (CAT) activity, acetylcholinesterase (AChE) acitivity and cholinergic muscarinic receptor binding ([3H]QNB) in eight areas of a cross-section of the rat medulla oblongata. A fourth cholinergic parameter, high-affinity choline uptake, was measured in three groups of these areas. CAT, AChE and [3H]QNB binding were found to be highest in the hypoglossal nucleus and the dorsal motor nucleus of the vagus; the lowest value was in the area which contains the inferior olive and the corticospinal tract. The distribution of AChE and CAT acitivities varied approximately 7- to 10-fold among the eight regions examined, whereas that of the muscarinic receptor varied only about 4-fold. The Na+-dependent high-affinity choline uptake varied approximately 20-fold from the region with the lowest activity (inferior olivary nucleus and corticospinal tract) to that with the highest activity (tissue areas containing the dorsal motor nucleus, hypoglossal nucleus, nucleus of the solitary tract and nucleus cuneatus). The four cholinergic parameters are statistically correlated throughout all the areas of the medulla which were studied.  相似文献   

13.
Ascending and descending projections to the inferior colliculus in the rat   总被引:1,自引:0,他引:1  
The ascending and descending projections to the central nucleus of the inferior colliculus (IC) were studied with the aid of retrograde transport of horseradish peroxidase (HRP). HRP-labelled cells were found in contralateral cochlear nuclei, where the majority of different cell types was stained. Few labelled cells were observed in the ipsilateral cochlear nuclei. HRP-positive neurones were found in all nuclei of the superior olivary complex on the ipsilateral side with the exception of the medial nucleus of the trapezoid body, which was never labelled either ipsilaterally or contralaterally. The largest concentration of HRP-labelled cells was usually observed in the ipsilateral superior olivary nucleus. Smaller numbers of labelled cells were present in contralateral nuclei of the superior olivary complex. Massive projections to the inferior colliculus were found from the contralateral and ipsilateral dorsal nucleus of the lateral lemniscus and ipsilateral ventral nucleus of the lateral lemniscus. Many neurones of the central and external nuclei of the contralateral inferior colliculus were labelled with HRP. Topographic organisation of the pathways ascending to the colliculus was expressed in the cochlear nuclei, lateral superior olivary nucleus and in the dorsal nucleus of the lateral lemniscus. HRP--positive cells were found in layer V of the ipsilateral auditory cortex, however, the evidence for topographic organisation was lacking.  相似文献   

14.
After contralateral hemi-cerebellectomy, neurons in the cat inferior olive may either degenerate, appear unchanged (affected) or become hypertrophic. Morphological and physiological aspects of the latter two cell types are studied by means of intracellular recording and injection techniques and compared to normal olivary neurons. It is demonstrated that affected and hypertrophic olivary neurons can be activated by mesodiencephalic stimulation. Affected olivary neurons are morphologically very similar to normal cells. However, they may respond with long latency action potentials only to mesodiencephalic stimulation. Hypertrophic olivary neurons have an enlarged dendritic tree and soma. The soma and proximal dendrites are studded with spine-like processes. Their reaction to mesodiencephalic stimulation is very diverse and may consist of short and/or long latency action potentials that may or may not trigger dendritic spikes. It is argued that olivary hypertrophy does not present either a degenerative or regenerative state, but that both hypertrophic as well as affected olivary neurons can survive axotomy due to a strong and continuous electrotonic coupling, made possible by destruction of the GABAergic cerebellar afferents.  相似文献   

15.
应用辣根过氧化物酶(HRP)做逆行标记,以四甲基联苯胺(TMB),为呈色剂,对成年大鼠下橄榄复合体到小脑分级球和线球的纤维投射进行了详细的研究。结果显示旁线球和线球接受对侧下橄榄复合体的纤维投射。其中,绒球只接受背帽(DC)和内侧副橄榄核(MAO)嘴段的投射;旁绒球接受MAO、橄榄主核(PO)及少量腹外延伸(VLO)的投射。但是,未观察到由下橄榄复合体的背侧副橄榄核(DAO)到旁绒球或绒球的投射。此外,对大鼠橄榄旁绒球和橄榄绒球投射的带型以及下橄榄与绒球和旁线球的功能做了相关的讨论。  相似文献   

16.
 The present study was conducted to investigate the distribution and immunohistochemical characteristics of ascending and descending projection neurons of the rat superior olivary complex (SOC), a group of interrelated brainstem nuclei. Ascending neurons were identified by injection of cholera toxin B subunit (CTB) into the central nucleus of the inferior colliculus (IC), descending neurons were labeled by application of Fluoro-Gold (FG) into the scala tympani of the cochlea, ipsilaterally to the IC injection. In accordance with the literature, we observed neurons innervating the IC located in the lateral superior olivary nucleus (LSO) and dorsal periolivary groups (DPO) on both sides, in the superior paraolivary nucleus (SPO) predominantly ipsilateral, as well as in the ipsilateral medial superior olivary nucleus (MSO) and the medial nucleus of the trapezoid body (MNTB). Cochlear projection neurons were found predominantly in the ipsilateral LSO as well as in the bilateral SPO, DPO, MSO and MNTB. In addition, a considerable population of neurons in the ipsilateral LSO and SPO were identified as being both ascending and descending. To further characterize these double-projecting neurons, brainstem sections were incubated in antisera directed against different neuroactive substances. The majority of ascending/descending cells in the LSO contained calcitonin gene-related peptide, but not substance P (SP), met-enkephalin (ENK) or tyrosine hydroxylase (TH). Some of these neurons apparently were contacted by ENK- or SP-immunoreactive fibers and terminals. In addition, we found TH-immunoreactive neurons in the lateral MNTB region. These neurons, which were labeled upon tracer injection into the cochlea (but not upon IC injection), probably belong to the C1 catecholaminergic cell group and may represent a division of the uncrossed olivocochlear bundle. The present results reveal the existence of a previously unknown subpopulation of SOC neurons that project to both the cochlea and the inferior colliculus. Their CGRP immunoreactivity and their uncrossed projection pattern provide evidence that they may belong to the cholinergic, putatively excitatory cell group. Received: 4 January 1999 / Accepted: 17 February 1999  相似文献   

17.
To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex’s various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex’s (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint’s underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint’s inverse model onto an MZMC’s biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint’s natural dynamics, as observed by motor output ringing at the joint’s natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum—in particular an MZMC—is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.  相似文献   

18.
Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.  相似文献   

19.
Multinuit activity from the inferior olive was recorded in chronic cats during a learned motor task. The animals were trained to perform a succession of rapid flexion-extension arm movements alternating with two maintained postures. No significant differences were observed in the olivary activity during maintained postures. However an increase of activity occurred before the beginning of the flexion detected on the biceps EMG recordings. The first modifications of olivary activity occurred in synchrony with postural reorganization preceding the flexion. This latter involved primarily the triceps. The increase of activity took place during the execution of movement and ended after the reaching of the target.  相似文献   

20.
In acute experiments on albino rats anesthetized with Nembutal (40 mg/kg, i.p.), we recorded the background impulse activity (BIA) generated by neurons of the inferior olive in the norm and after 5-, 10-, and 15-daylong vibrational influence (60 Hz, 2 h, daily). We characterized the distributions of neurons according to the regularity of impulse successions, their dynamics, and pattern of histograms of interspike intervals (ISIs); we also calculated the mean frequency of impulsation and the coefficient of variation of ISIs. It was demonstrated that the most significant shifts of the characteristics of BIA generated by neurons of the inferior olive were formed within the first 10 days of the vibrational influence. These shifts were observed mainly in the mean discharge frequency (increased within the initial period) and, to a lesser extent, in the intrinsic structure of impulse trains. Such shifts in the background activity of the inferior olive caused by long-lasting vibrational influence result, perhaps, from intensification of the influences of excitatory cerebellar/mesodiencephalic inputs to olivary neurons within the early periods of action of the above factor and prevalence of GABAergic influences within the later periods. It seems possible that, under such conditions, the characteristics of electrical synapses of the olivary neurons are also subjected to modification. Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 340–347, July–August, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号