首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the widespread introduction of the nitrogen-fixing legume sesbania, Sesbania sesban (L.) Merril, in agroforestry systems, the defoliating beetle Mesoplatys ochroptera St?l has become a serious pest of the trees in Africa. To determine within-field and within-plant spatial distribution of M. ochroptera on both seedlings and trees of sesbania, distribution statistics were computed using Iwao's mean crowding regression model. In 1- to 3-mo-old seedlings, the model accounted for 29.8, 32.2, and 61.0% of the variation observed in mean crowding to mean relationships in egg masses, larvae and adults, respectively. The model slopes of the regression were greater than unity for all stages indicating aggregated spatial distribution. Values of the intercept were greater than zero for egg masses, larvae and adults indicating that the basic components of the population are groups of individuals. The highest density (>80%) of mating and feeding adults was found in the upper third of 1- to 2-mo-old seedlings, while most of the egg masses were found in the lower half of seedlings. In trees, >60% of the individuals of all stages were found in the lower third of the foliage canopy, while <10% were found in the upper third. Sampling adults was found to be easier and gave better density estimates of M. ochroptera population than egg masses and larvae. Therefore, sampling plans useful for population studies and decision-making in pest management were developed for adults.  相似文献   

2.
1 The defoliator beetle, Mesoplatys ochroptera Stål, is a serious pest of the legume tree sesbania (Sesbania sesban (L.) Merrill) in agroforestry systems in southern Africa. The survival of the overwintering stage of M. ochroptera and post‐ emergence longevity and fecundity of adults in sesbania fallows in eastern Zambia were quantified. 2 Only adult M. ochroptera survived during the winter (May–August) and the dry season (September–October) hidden under weeds, plant litter, in soil cracks and under rocks. During these periods, some beetles were occasionally found feeding on S. sesban, particularly in natural stands in humid areas. The adults were parasitized by the braconid Perilitus larvicida van Achterberg at a rate of 8.5–16.4%. The beetles stayed in the winter refuges for up to 210 days and emerged with the first heavy rains in October–November. The effective survival of beetles overwintering in an insectary was 18.1% in 1998 and 37.7% in 1999, and that of beetles overwintering in the field was estimated at 0.4 and 2.8% in 1998 and 1999, respectively. 3 The post‐emergence longevity and oviposition period of females in the insectary was 14–31 days and 5–29 days, respectively. The post‐emergence fecundity varied from 87 to 783. 4 It is concluded that the serious M. ochroptera infestation observed every year following the rains is due to synchronous emergence of overwintered resident adult populations and their high capacity for reproduction on many species of Sesbania. Recommendations for pest management in sesbania planted‐fallows are given.  相似文献   

3.
Occupancy-abundance relationships and sampling scales   总被引:4,自引:0,他引:4  
The area of occupancy of a species and its abundance are dependent on the spatial scale at which they are measured. However, it is less obvious how the scale of sampling affects their correlation. This study investigated and modeled the effects of sampling unit size and a real extent on the interspecific occupancy-abundance relationships for a tropical tree species assemblage at a local scale and a temperate bird species assemblage at a regional scale. The results showed that both sampling unit size and study extent had profound quantitative effects on the occupancy-abundance relationship, although it remained positive. Several properties of the occupancy-abundance relationship can result from the effects of scale: 1) the linearity of the relationship decreases with the increase of sampling unit size; 2) for a given abundance, the area of occupancy increases with sampling unit size; and 3) variation in the area of occupancy increases with the increase of both sampling unit size and extent, and if the extent is large enough may be sufficient that no occupancy-abundance relationship is observed. Although the occupancy-abundance relationship can be satisfactorily modeled, the parameters depend on the scale used. This suggests that a model derived from one scale cannot be applied to another. In other words, to estimate the rarity or commonness of species using such a model, the estimation must be strictly done using the same sampling scale for all the species.  相似文献   

4.
Epigeic polyphagous predatory beetles can regulate the pest abundance. The range of population densities at which regulation is possible is specific to each predator-prey subsystem and can be determined experimentally. In the subsystem of ground and rove beetles (Carabidae and Staphylinidae) and the cabbage maggot Delia brassicae Bouché and in that of Carabus hampei Küst. and the Colorado potato beetle Leptinotarsa decemlineata Say, regulation occurs at low pest densities: in the former subsystem, at oviposition rates not exceeding 3 eggs per day per plant, and in the latter, at the pest density varying from 1 to 36 eggs per potato plant. Within these density ranges, both the absolute and relative number of pest individuals eliminated by the predatory beetles increase. The maximum fraction of the pests destroyed by these entomophages is observed at medium prey population densities, which corresponds to functional response of type III (Holling, 1965).  相似文献   

5.
6.
1. The positive abundance-occupancy and abundance-variance relationships are two of the most widely documented patterns in population and community ecology. 2. Recently, a general model has been proposed linking the mean abundance, the spatial variance in abundance, and the occupancy of species. A striking feature of this model is that it consists explicitly of the three variables abundance, variance and occupancy, and no extra parameters are involved. However, little is known about how well the model performs. 3. Here, we show that the abundance-variance-occupancy model fits extremely well to data on the abundance, variance and occupancy of a large number of arthropod species in natural forest patches in the Azores, at three spatial extents, and distinguishing between species of different colonization status. Indeed, virtually all variation about the bivariate abundance-occupancy and abundance-variance relationships is effectively explained by the third missing variable (variance in abundance in the case of the abundance-occupancy relationship, and occupancy in the case of the abundance-variance relationship). 4. Introduced species tend to exhibit lower densities, less spatial variance in these densities, and occupy fewer sites than native and endemic species. None the less, they all lie on the same bivariate abundance-occupancy and abundance-variance, and trivariate abundance-variance-occupancy, relationships. 5. Density, spatial variance in density, and occupancy appear to be all the things one needs to know to describe much of the spatial distribution of species.  相似文献   

7.
Practices that enhance abundance and diversity of generalist predators are often employed with the objective of improving biological control of insect pests. Ground beetles and other predators can prey on blueberry maggot, an important pest of blueberries, when mature larvae pupate in the ground. We conducted mesocosm and field experiments to determine if Pterostichus melanarius, a common predatory ground beetle, lowers maggot numbers in compost mulch or when predator and alternative prey abundances are manipulated. At background (field) densities of alternative prey, increasing densities of P. melanarius did not significantly reduce pest numbers in mesocosms containing compost or soil. When alternative prey were removed from compost, beetles reduced pest numbers by up to 35%. In field experiments, maggot numbers were higher when beetles and other predators were excluded from soil plots, but beetle exclusion had no effect in compost plots where both predator and alternative prey numbers were high. Our results indicate that there can be some reduction of blueberry maggot by P. melanarius and other potential predators when there are few alternative prey. However, despite attracting large numbers of predators compost mulch did not lead to a significant reduction in blueberry maggot; in fact, the high abundance of alternative food associated with compost appeared to interfere with beetle predation on blueberry maggot.  相似文献   

8.
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.  相似文献   

9.
We evaluated the effects of different land-use systems on the ability of dung beetles to control the population of detritus-feeding flies. We tested the hypotheses that intensification of land use will reduce dung beetles richness, abundance and biomass and, consequently, their dung burial ability, affecting the interaction between dung beetles and flies and reducing its effectiveness as a natural biological control. In the Brazilian Amazon we sampled dung beetles, fly larvae and adults; and recorded the rate of dung removal by dung beetles across a gradient of land-use intensity from primary forest, secondary forest, agroforestry, agriculture to pasture. Our results provide evidence that land-use intensification results in a reduction of the richness, abundance and biomass of dung beetles, and this in turn results in lower rates of dung removal in the most simplified systems. We found no significant differences in the abundance of fly larvae between the different systems of land use. However, the number of adult flies differed significantly between land-use systems, presenting higher abundance in those sites with greater intensity of use (pasture and agriculture) and a lower abundance of adult flies in forested systems (primary and secondary forests, and agroforestry). Information-theoretic model selection based on AICc revealed strong support for the influence of land-use systems, dung removal rates and dung beetle abundance, biomass and richness on adult dung-fly abundance. Our results also reveal that dung beetles are not solely responsible for fly control and that other factors linked to land use are influencing the populations of these detritus-feeding insects.  相似文献   

10.
Mesoplatys ochroptera Stål (Coleoptera: Chrysomelidae) is a serious pest of the tropical legume sesbania (Sesbania sesban (L.) Merrill) widely used for soil fertility improvement in southern Africa. Surveys were conducted between October 1997 and June 1999 in order to identify the predators of M. ochroptera in sesbania fallows in eastern Zambia. The Heteroptera Afrius yolofa (Guérin-Méneville), Glypsus conspicuus (Westwood), Macrorhaphis acuta Dallas, Mecosoma mensor (Germar), Rhinocoris segmentarius (Germar), and Deraeocoris ostentans (Stål), the carabid beetle Cyaneodinodes fasciger (Chaudoir), the ants Tetramorium sericeiventre Emery and Pheidole sp., and the lacewing Mallada sp. were recorded as predators of M. ochroptera for the first time. The pentatomid bugs G. conspicuus, M. acuta and M. mensor were the most common predators in sesbania fallows. Adults and the different nymphal stages of the three species preyed on larvae, adults and occasionally on eggs of the beetle. In the insectary, the adults of G. conspicuus, M. acuta and M. mensor consumed a significantly higher number of larvae (p < 0.001) compared to adults of M. ochroptera under both free-choice and no-choice conditions. The voracity of the three species showed a positive response to prey density. The fifth instar nymphs showed variation in daily consumption of larvae, the highest number of prey being consumed two to three days after the fourth molt. These predators also attacked other pests associated with sesbania and crop plants. The potential role of the predators in the natural control of pests in agroforestry systems is discussed, with a review of their prey species.  相似文献   

11.
We tested the hypothesis that the population density of ambrosia beetles at the stand level influences the spatial distribution of infested trees. We evaluated the spatial distribution of the ambrosia beetle, Platypus koryoensis (Murayama) in three oak forest stands that varied in beetle population density using a multi-year trapping survey. We used these data to inform a clustering analysis based on aggregation indices using the SADIE software. Four important findings emerged: (1) the spatial distribution pattern of P. koryoensis at the stand level changed as the population density of the beetle varied; (2) at low population densities, beetle distribution was contagious at the stand level; (3) as beetle population densities increased, the spatial distribution of infested trees became random, potentially due to beetle avoidance of mass attacked trees; and (4) at high beetle population densities, the spatial distribution of infested trees became contagious, possibly due to temporal changes in location of the attack epicenter within the stand. Our results support the hypothesis that beetle population density has consequences for the spatial distribution of infested trees at the within-stand scale. We conclude that the spatial distribution of infested trees is flexible in response to beetle population density, suggesting that beetle attack behaviors are mediated by one or more density-dependent effects.  相似文献   

12.
Predicting the change in abundance is pivotal for evaluating species’ current conservation status and population viability. Empirical works have suggested that species with an increasing abundance have a more aggregated distribution than those with a declining abundance (namely, the change-aggregation hypothesis, CAH). Here we introduced an improved negative binomial distribution model of the occupancy-abundance relationship (OAR) to estimate the change in abundance from changes in occupancy or aggregation. Analysis of the model suggests that (i) in general the change in abundance is synchronized with the change in occupancy when the level of environmental heterogeneity remains constant, and (ii) there could exist a threshold of the population density above which the CAH is no longer valid. Tests using data of epigaeic ants in Fynbos of South Africa collected from different seasons and macro-invertebrates from different localities in streams of central Spain verified these model propositions and thus support the use of this model as a monitoring method for assessing species persistence. Results suggest that the change in abundance can be estimated from the change in occupancy often obtained from cost-efficient presence-absence records, and a revision of the traditional CAH is necessary to capture the threshold phenomenon in the change-aggregation relationship. This work thus signifies the use of the three distinct but related concepts of population structure (i.e. occupancy, abundance and aggregation) in conservation biology.  相似文献   

13.
In order to explore the importance of indigenous agroforestry systems for biodiversity conservation, we compared the abundance, species richness and diversity of dung beetles and terrestrial mammals across a gradient of different land use types from agricultural monocultures (plantains) to agroforestry systems (cocoa and banana) and forests in the BriBri and Cabécar indigenous reserves in Talamanca, Costa Rica. A total of 132,460 dung beetles of 52 species and 913 tracks of 27 terrestrial mammal species were registered. Dung beetle species richness and diversity were greatest in the forests, intermediate in the agroforestry systems and lowest in the plantain monocultures, while dung beetle abundance was greatest in the plantain monocultures. The number of mammal tracks per plot was significantly higher in forests than in plantain monocultures, whereas mammal species richness was higher in forests than in either cocoa agroforestry systems or plantain monocultures. Species composition of both terrestrial mammals and dung beetles also varied across the different land use types. Our study indicates that indigenous cocoa and banana agroforestry systems maintain an intermediate level of biodiversity (which is less than that of the original forest but significantly greater than that of plantain monocultures) and provide suitable habitat for a number of forest-dependent species. Although the agroforestry systems appear to serve as favorable habitats for many terrestrial mammal species, their potential positive contribution to mammal conservation is being offset by heavy hunting pressure in the reserves. As in other agricultural landscapes, the conservation of biodiversity in Talamanca will depend not only on maintaining the existing forest patches and reducing the conversion of traditional agroforestry systems to monocultures, but also on reducing hunting pressure.  相似文献   

14.
Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), the red flour beetle, is an important cosmopolitan pest of stored grains. Commercial traps baited with the synthetic aggregation pheromone 4,8-dimethyldecanal (DMD) are used to monitor T. castaneum population densities in storage facilities. However, trap catches may depend on several intrinsic and extrinsic factors. In this study, we explored the effects of beetle nutritional environment, sex, and mating status on the response of T. castaneum to commercial Storgard Dome traps. Beetles raised on a low-nutrition diet were 1.7 times more likely to enter DMD-baited traps compared with beetles that were raised on a high-nutrition diet. Although no sex difference in trap response was found, unmated beetles of both sexes were more responsive to DMD than were mated beetles, and this effect was especially pronounced for beetles reared on a low-nutrition diet. These results suggest that estimating T. castaneum population densities based on trap catches might be improved by incorporating information about the nutritional quality of infested stored products.  相似文献   

15.
We observed a weed (Ambrosia artemissifolia)–beetle herbivore (Ophraella communa) system for three years in a spatially continuous field (≈200 ha). We analyzed our field data in the light of two contrasting theories: the resource-concentration hypothesis and reaction–diffusion theory. For the resource-concentration hypothesis, we calculated the correlation coefficients between weed and beetle abundances for every season in each year. Although we found weak support for resource concentration in some seasons, we could not find any clear relationships in other seasons. We discuss a dispersal-based mechanism to explain the differences observed among seasons in lieu of the resource-concentration hypothesis. For the reaction–diffusion theory, we estimated the nonparametric spatial covariance functions for the spatial autocorrelation of weeds and beetles. Although we could not find any strong spatial structure for the individual species, we found evidence of spatial interactions between weeds and beetles using time lagged cross-correlation functions. Weed abundance enhanced local beetle abundance. Through time, there was evidence of beetle spillover to adjacent locations at roughly the one beetle-generation time scale. Sites with large number of beetles did not seem to reduce subsequent weed abundance.  相似文献   

16.
Theoretical studies of predator‐prey population dynamics have increasingly centered on the role of space and the movement of organisms. Yet, empirical studies have been slow to follow suit. Herein, we quantified the long‐range movement of a checkered beetle, Thanasimus dubius, which is an important predator of a pernicious forest pest, the southern pine beetle, Dendroctonus frontalis. Adult checkered beetles were marked and released at five sites and subsequently recaptured at traps baited with pine and pine beetle semiochemicals and located at distances up to 2 km away from the release point. While the pattern of recaptures‐with‐distance at each site provided a modest fit to a simple random‐diffusion model, there was a consistent discrepancy between observed and expected recaptures: a higher than expected proportion of beetles were recaptured at the more distant traps. To account for this deviation, we developed a model of diffusion that allowed for simple heterogeneity in the population of marked beetles; i.e., a slow and fast moving form of the checkered beetle. This model provided a significantly better fit to the data and formed the basis for our estimates of intra‐forest movement. We estimated that on average, one half of the checkered beetles dispersed at least 1.25 km, one third dispersed>2 km, and 5% dispersed>5 km. The source of the heterogeneous dispersal rates were partially due to differences in beetle size: smaller beetles (for both males and females) were more likely to be recaptured away from the release site than larger beetles. The southern pine beetle (prey for the checkered beetle) exhibited no significant heterogeneity in dispersal ability and provided a very good fit to the simple diffusion model. The only difference in dispersal between these two species was that checkered beetles were undergoing greater long‐distance dispersal than the pine beetles (the radius containing 95% of the dispersing individuals was 5.1 km for the checkered beetle and 2.3 km for the pine beetle). Data on the movement of these two species is used to evaluate a general model of spatial pattern formation in a homogeneous environment, and the potential of the checkered beetle as a biological control agent for the southern pine beetle.  相似文献   

17.
Ché M. Elkin  Mary L. Reid 《Oikos》2010,119(7):1070-1080
We tested whether mountain pine beetles Dendroctonus ponderosae, an insect herbivore that exhibits outbreak population dynamics, modifies its habitat selection behaviour in response to density‐dependent environmental shifts. Using an individual‐based habitat selection model, we formulated predictions of how beetle population density will influence breeding habitat selectivity. Our model predicted that beetles should be more selective at intermediate densities than at low or high densities. The mechanisms influencing optimal selectivity differed between low and high density populations. In low density populations, breeding site availability was the primary factor affecting selectivity, whereas intraspecific competition and the reliability of habitat quality cues were important in high density populations. We tested our model predictions in natural populations that encompassed a range of beetle population densities. Our empirical findings supported the two key predictions from our model. First, habitat quality was more variable in high density populations. Second, individuals in high density populations were less selective compared to beetles from intermediate density populations. Our results demonstrate that beetles alter their habitat selection behaviour in response to density‐dependent shifts. We propose that the behavioural changes we identified may influence the rate at which beetle populations transition between density states.  相似文献   

18.
Occupancy has several important advantages over abundance methods and may be the best choice for monitoring sparse populations. Here we use simulations to evaluate competing designs (number of sites vs. number of surveys) for occupancy monitoring, with emphasis on sparse populations of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov). Because conservation planning is usually abundance-based, we also ask whether detection/non-detection data may reliably convert to abundance, hypothesizing that occupancy provides a more dependable shortcut when populations are sparse. Count-index and distance sampling were conducted across 50 habitat patches containing variably sparse Karner blue populations. We used occupancy-detection model estimates as simulation inputs to evaluate primary replication tradeoffs, and used peak counts and population densities to evaluate the occupancy-abundance relationship. Detection probability and therefore optimal design of occupancy monitoring was strongly temperature dependent. Assuming a quality threshold of 0.075 root-mean square error for the occupancy estimator, the minimum allowable effort was 360 (40 sites?×?9 surveys) for spring generation and 200 (20 sites?×?10 surveys) for summer generation. A mixture model abundance estimator for repeated detection/non-detection data was biased low for high-density and low-density populations, suggesting that occupancy may not provide a reliable shortcut in abundance-based conservation planning for sparse butterfly populations.  相似文献   

19.
Comparative assessment of attractiveness of different pheromone products is presented and the possibility of using pheromone-baited sticky traps for identification of the pest foci and monitoring of its abundance is considered. The test variants showed high selectivity in the territory of the Tsarskoye Selo open-air museum. Pheromone with the addition of a-pinene and limonene was more effective when using barrier traps. During the season, 2636 beetles were captured in standard traps, 2431 beetles, in standard traps with the addition of a-pinene, and 2469 beetles, in standard traps with the same components and limonene. Comparison of the barrier and sticky traps showed the same tendency in the pest population dynamics revealed by the two types of traps (correlation coefficient 0.8862). The use of additional components increased the duration of pheromone activity. Thus, improvement of the component composition of pheromones and the types of traps is required for using them as tools to monitor the European spruce bark beetle abundance and assess the risk of damage to trees.  相似文献   

20.
Diversification of habitat has proved to be an efficient way to reduce insect pest levels in agroecosystems. Some general theories used to explain this fact, such as the natural enemies and the resource concentration hypotheses, do not always clearly apply because, in many cases, pest individuals and population response seem controlled by more specific insect-plant interactions. In non replicated plots, we found substantially lower flea beetle densities in mixed broccoli-Vicia cropping systems compared to broccoli monoculture. These results were consistent with those from controlled experiments reported in the literature. To investigate if beetle behavior was related to such population reduction, the movement behavior of marked individuals of Phyllotreta cruciferae Goeze released in plots composed solely of broccoli plants and of broccoli mixed with Vicia faba or Vicia sativa plants, was followed and analyzed. The mean tenure time of beetles was longer in simple than in mixed cultures. Also, more beetles tended to fly out and leave mixed cultures compared to monoculture. This resulted in faster reduction of artificially introduced flea beetle populations in the mixed systems.Flea beetles landing on cover crop plants spent considerable time entangled in Vicia sativa branches or attempting to reach the upper part of the tall Vicia faba plants from which they could fly away. It is possible that the beetles characteristic movement on these two species of cover crops increased their risk of predation and the time and energy expended before they reached suitable host plants. Nevertheless, it seems that the detected flea beetle emigration rates were more than sufficient to account for the population trends observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号