首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain physicochemical properties of glycoglycerolipids from marine alga Laminaria japonica (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol) and their ability to be incorporated into immunostimulating complexes (ISCOMs) used for delivery of microbial and tumor antigens in vesicular form were comparatively described. These glycolipids proved to considerably differ by fatty acid composition, degree of unsaturation, and phase transition temperatures. Production of modified ISCOMs through incorporation of these glycolipids into the vesicle instead of the glycolipid component was demonstrated. Preliminary data demonstrated no significant increase in immune response to Yersinia pseudotuberculosis porin in the modified (with monogalactosyldiacylglycerol) and classical (with phosphatidylcholine) ISCOMs as compared to pure porin.  相似文献   

2.
By using the combined approaches of microcalorimetric analysis and polarizing microscopy, the crystal-liquid crystal-isotropic melt phase transition of major phospholipids (phosphatidylcholine and phosphatidylethanolamine) and glycolipids (monogalactosyldiacylglycerol and digalactosyldiacylglycerol) isolated from marine seagrass Zostera marina were investigated. Here we discuss the results in view of the fatty acid structures of the lipids studied.  相似文献   

3.
Features that alter the glycolipid sugar headgroup accessibility at the membrane interface have been studied in bilayer lipid model vesicles using a fluorescence technique with the enzyme galactose oxidase. The effects on oxidation caused by variation in the hydrophobic moiety of galactosylceramide or the membrane environment for galactosylceramide, monogalactosyldiacylglycerol and digalactosyldiacylglycerol were studied. For this study we combined the galactose oxidase method for determining the oxidizability of galactose containing glycolipids, and the fluorescence method for determining enzymatic hydrogen peroxide production. Exposed galactose residues with a free hydroxymethyl group at position 6 in the headgroup of glycolipids were oxidized with galactose oxidase and subsequently the resultant hydrogen peroxide was determined by a combination of horseradish peroxidase and 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red). Amplex Red reacts with hydrogen peroxide in the presence of horseradish peroxidase with a 1:1 stoichiometry to form resorufin. With this coupled enzyme approach it is also possible to determine the galactolipid transbilayer membrane distribution (inside-outside) in bilayer vesicles.  相似文献   

4.
《BBA》1987,891(1):28-39
ATPase activity of CF0CF1 from spinach chloroplasts is specifically stimulated by chloroplast lipids (Pick, U., Gounaris, K., Admon, A. and Barber, J. (1984) Biochim. Biophys. Acta 765, 12–20). The association of CF0-CF1 with isolated lipids and their mixtures has been examined by analyzing the stimulation of ATPase and ATP-Pi exchange activities, by binding studies and by measurement of proton conductance of reconstituted proteoliposomes. Monogalactosyldiacylglycerol is the only chloroplast lipid which by itself activates ATP hydrolysis. A mild saturation of the fatty acids of the lipid partially inhibits the activation. CF0-CF1 has a higher binding capacity for monogalactosyldiacylglycerol (1.5 mg/mg protein) than for other thylakoid glycolipids. However, ATPase activation is not correlated with the amount of bound lipid but rather with its type. For the same amount of bound lipid, monogalactosyldiacylglycerol best activates ATP hydrolysis, while the acidic lipids phosphatidylglycerol and sulphoquinovosyldiacylglycerol inhibit ATPase activity. Optimal activation of ATP-Pi exchange requires, in addition to monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol at a ratio of 6:3:1, respectively. Correlations between proton conductance, ATP-Pi exchange and uncoupler stimulation of ATPase activity indicate that sulphoquinovosyldiacylglycerol reduces the permeability of the proteoliposomes to protons. The results suggest that: (a) association of CF0-CF1 with polyunsaturated monogalactosyldiacylglycerol greatly stimulates ATPase activity; (b) reconstitution of coupled CF0-CF1 proteoliposomes requires a careful balance of the natural glycolipids of thylakoid membranes in similar proportions to their occurrence in chloroplasts, and (c) sulphoquinovosyldiacylglycerol may control the permeability of chloroplast membranes to protons.  相似文献   

5.
DK Hincha  JH Crowe 《Cryobiology》1998,36(3):245-249
Chloroplast thylakoids contain three classes of glycolipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG). We have investigated the stability of large unilamellar vesicles made from egg phosphatidylcholine (EPC) and different chloroplast glycolipids during freezing to -18 degreesC, as a function of the presence of three sugars: glucose, sucrose, or trehalose. Contrary to the situation in thylakoids, where cryoprotection increases from glucose < sucrose < trehalose, liposomes containing 50% DGDG showed the opposite behavior. In fact, carboxyfluorescein leakage increased over the control values (freezing in the absence of sugar) in the presence of trehalose. This effect was not seen in vesicles made from pure EPC, or a mixture of EPC and MGDG, or EPC and SQDG. Liposomes made from mixtures of all three glycolipids, however, showed even more leakage in the presence of trehalose than liposomes containing only DGDG and EPC. Copyright 1998 Academic Press.  相似文献   

6.
Summary The ultrastructure of plastids in xylem ray parenchyma cells of Pinus sylvestris L. was studied and compared with the glycolipid composition of the stemwood. Seasonal changes of the ultrastructure were studied by taking samples regularly throughout the year. The plastids resemble amyloplasts. They usually have one large starch grain, and considerable variation in structure and starch content was observed, especially in the innermost sapwood and in the sapwood-heartwood transition zone. Electron-dense deposits were observed attached to the plastid membranes and envelopes, especially in the transition zone, from April to November. The plastids were aggregated near the nucleus and the starch disappeared during the winter (January–March). The glycolipids, monogalactosyldiacylglycerol (MGDG) and di-galactosyldiacylglycerol (DGDG), were present only in the sapwood, in trace amounts. The glycolipid content was slightly greater in the outer sapwood than in the sapwood-heartwood transition zone. DGDG was the dominant lipid of the two.  相似文献   

7.
Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.  相似文献   

8.
A successful vaccine against human RSV (HRSV) is likely to induce a Th1 or a balanced Th1/TH2 cytokine response. We tested a panel of HRSV immunostimulating complexes (ISCOMs) containing different Quillaja saponin fractions (QH-A, QH-C, and 703: a mixture of 70% QH-A and 30% QH-C) with different immunological properties for their capacity of inducing innate and acquired immune responses. The HRSV 703 ISCOMs induced the strongest innate and acquired immune responses, followed by RSV QH-C and QH-A ISCOMs. All three formulations induced various degrees of Th1 bias response with prominent production of IFN-gamma being 10-50 times higher than that of IL-4 and IL-5. The HRSV specific IgG isotype profile correlated with the predominant secretion of Th1 cytokines, with strong induction of IgG2a antibodies. The 703 ISCOMs induced the most pronounced Th1 profile followed by QH-C and QH-A ISCOMs. The high incorporation of F protein in these ISCOMs compared to G protein combined with the Th1 biased nature of ISCOM are likely to be the causes to promote a Th1 type of profile. The prospect to formulate an RSV ISCOM formulation with an optimal Th1/Th2 balance is in reach particularly in view of the versatile properties of the ISCOM concept.  相似文献   

9.
The glycoproteins and glycolipids from membranes of virulent strain Z and avirulent strain M ofMycoplasma hyopneumoniae have been compared. The proteins and the glycoproteins were identified by SDS-polyacrylamide gel electrophoresis and concanavalin A-biotin labeling, respectively. The membrane preparation contained approximately 34 protein bands with molecular weights between 20 KD and 100 KD. The concanavalin A-biotin system reacted with a glycoprotein of a molecular weight of approximately 28,000 from avirulent strain M and did not react with the correspondent band from virulent strain Z. The membrane glycolipids of both strains consisted of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and the percentages of 160, 180, and 181 fatty acids comprised more than 80% of the total fatty acids of membrane glycolipids. The 180 fatty acid of MGDG in avirulent strain M was twofold higher than that of virulent strain Z.  相似文献   

10.
11.
Microcalorimetry was used to show that transition-temperature ranges of phospho- and glycolipids of the brown marine alga Laminaria japonica were similar (from -62 to -47 degrees C up to 62-65 degrees C), except for monogalactosyldiacylglycerol, the low-temperature limit of which was shifted to -78 degrees C. As was shown by polarizing microscopy, the low-enthalpy peaks at temperatures of approx. 30-45 degrees C corresponded to isotropic melting of galactolipids and coincided with the high-temperature limit for photosynthetic and mitochondrial activity of the algae. As a whole, a classical interrelation was observed between thermotropic behaviour and the fatty acid unsaturation of lipids.  相似文献   

12.
The positional distribution of fatty acids in chloroplast polar lipids and phosphatidylcholine from leaves of four plants has been measured in order to determine the origin of the diacylglycerol (DAG) moieties of each lipid. In spinach and tobacco, the DAG of sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG) and digalactosylglycerol (DGDG) were derived partly from the chloroplast and partly from the cytoplasm. The contribution of the chloroplast pathway differed for each lipid, but in both plants the proportion of a lipid derived from that pathway was in the order SQDG greater than MGDG greater than DGDG. In contrast, all the DAG moieties of the three glycolipids of wheat and cucumber were derived from the cytoplasm. The DAG moiety of chloroplast phosphatidylglycerol was synthesized in the chloroplast in all four plants.  相似文献   

13.
Immunostimulating complexes (ISCOMs) are unique, multimolecular structures formed by encapsulating antigens, lipids, and triterpene saponins of plant origin, and are an effective delivery system for various kinds of antigens. The uses of ISCOMs formulated with saponins from plants collected in Kazakhstan, with antigens from the poultry coccidian parasite Eimeria tenella, were evaluated for their potential use in developing a vaccine for control of avian coccidiosis. Saponins isolated from the plants Aesculus hippocastanum and Glycyrrhiza glabra were partially purified by HPLC. The saponin fractions obtained from HPLC were evaluated for toxicity in chickens and chicken embryos. The HPLC saponin fractions with the least toxicity, compared to a commercial saponin Quil A, were used to assemble ISCOMs. When chicks were immunized with ISCOMs prepared with saponins from Kazakhstan plants and E. tenella antigens, and then challenged with E. tenella oocysts, significant protection was conveyed compared to immunization with antigen alone. The results of this study indicate that ISCOMs formulated with saponins isolated from plants indigenous to Kazakhstan are an effective antigen delivery system which may be successfully used, with low toxicity, for preparation of highly immunogenic coccidia vaccine.  相似文献   

14.
We have studied the substrate specificities of a non-specific activator protein on the enzymatic hydrolyses of the following compounds: GM1 and GM2, as well as several of their derivatives including oligosaccharides, GgOse3Cer-II3-sulfate and LacCer-II3-sulfate, Gb-Ose3Cer and GbOse4Cer, three neolacto-series glycosphingolipids, and two non-ceramide glycolipids. Our results show that this activator protein has a broad spectrum of activity and exhibits the properties of a nonspecific natural detergent. The evidence of non-specificity was the ability of this activator protein to stimulate the hydrolyses of glycolipids, regardless of glycosphingolipids or non-ceramide glycolipids, carried out by glycosidases from animals, plants, and microorganisms. Its activity was, however, limited to substrates that had a lipid moiety. The oligosaccharide of GM1 and deacetyl-fatty acid free GM1 (II3-NeuGg-Ose4-sphingosine) were hydrolyzed by beta-galactosidase in the absence of this activator protein.  相似文献   

15.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

16.
The medusa Phyllorhiza punctata has been found in Brazilian waters where it is an exotic species, having arrived in ballasts from the Indo-Pacific Ocean in the general region of North Australia and Indonesia. Fatty acids of the intact animal and its component umbrella, oral arms, and mucus were identified. Two different groups of glycolipids and a sphingolipid were isolated by silica-gel column chromatography and characterized using GC-MS, ESI-MS, 1D, 2D (13)C, (1)H and (31)P NMR spectroscopy. They were sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG), and ceramide aminoethylphosphonate (CAEP). The CAEP long chain base (LCB) and its polar head group (PHG) formed by partial hydrolysis, were analyzed by ESI-MS/MS. The probable origin of MGDG and SQDG in the jellyfish is the result of an endosymbiotic association with a microalga of the Dinoflagellate group, since these lipids are commonly found in photosynthetic membranes.  相似文献   

17.
Studies were undertaken in mice using immune-stimulating complexes (ISCOMs) or micelles prepared from envelope glycoproteins of human influenza virus (PR8) and matrix (i.e., ISCOM skeleton without incorporated antigen). Electron microscopic studies showed that ISCOMs, in contrast to micelles, have a remarkable affinity for cell membranes and seem to rapidly promote their own internalization by cells to which they adhere. PR8 ISCOMs, but not matrix nor micelles, significantly increased the expression of membrane Ia by peritoneal mononuclear leucocytes 24 hr after intraperitoneal immunization.  相似文献   

18.
The physical properties of bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence of four water-soluble polyhydroxyl compounds, trehalose, sorbitol, glycerol, and ethyleneglycol, and three neutral glycolipids - monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and nonhydroxy fattyacyl-cerebrosides (NHFA-Cer) - were investigated using 2H-NMR. All four polyhydroxyl compounds induced small, but comparable concentration-dependent changes in the choline headgroup conformation which were consistent with the presence of a small negative charge being conferred upon the bilayer surface. The latter may be explained by dipolar interactions brought about by changes in the long-range order of the water layer at the membrane surface. Trehalose had a small ordering effect on the hydrophobic interior of the membrane while ethyleneglycol induced a disordering, at both the head group level and in the hydrophobic interior. The presence of high amounts of carbohydrate at the membrane surface was ensured when POPC was mixed with various proportions of one of three glycolipids, MGDG, DGDG and NHFA-Cer. In these cases the conformation of the choline headgroup was only marginally altered when not masked by macroscopic phase changes. The headgroup conformational changes observed in the presence of any of the above-mentioned compounds were modest in comparison to the effects induced by charged substances.  相似文献   

19.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

20.
We investigated digestion of orally fed galactoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) from wheat flour in the rat alimentary canal, especially focusing on the digestive fates of deacylated galactosylglycerol structures. After a single oral administration of MGDG (20 mg/rat), monogalactosylmonoacylglycerol and monogalactosylglycerol (MGG) were found to be major digestion products in the intestinal tract. Similarly, digalactosylmonoacylglycerol and digalactosylglycerol (DGG) were confirmed to be present in the intestinal tract after DGDG ingestion (20 mg/rat). In rats fed wheat flour glycolipids (42 mg MGDG and 81 mg DGDG per rat), completely deacylated galactosylglycerols (MGG and DGG) were not detected in portal plasma. Although the deacylated galactosylglycerols were not significantly decomposed by intestinal mucosa in vitro, they were hydrolyzed by cecal contents. The results demonstrated that orally ingested plant galactoglycerolipids in the rat alimentary canal are rapidly hydrolyzed into constituent fatty acids and that hydrophilic galactosylglycerols and the hydrophilic backbone galactosylglycerols are not absorbed from intestine or degraded into galactose and glycerol in the intestinal tract. Therefore, the presence of deacylated galactosylglycerols may affect the fermentative activity of enterobacteria in the cecum and colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号