首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using ammonium sulfate, Arg-Sepharose and gel filtration, an urinary trypsin inhibitor (UTI) with molecular weight of 67,000 (UTI7) was isolated from normal human urine. The yield of UTI7 was about 3,200 U per liter of urine. When urine was acidified, an uropepsin-like substance was activated which caused molecular weight change of UTI7. New UTIs had molecular weight of 45,000 and 22,000 (UTI4-5 and UTI-2-2), respectively. These inhibitors showed a strong effect on trypsin, alpha--chymotrypsin and lesser extent on plasmin and elastase, but had no effect on esterolytic activity on thrombin and the first components of complement Cls an Clr.  相似文献   

2.
3.
Streptomyces griseus trypsin (E.C. 3.4.21.4) is one of the major extracellular proteinase, which is secreted by S. griseus. The gene encoding S. griseus trypsin was isolated from a S. griseus genomic library by using a synthetic oligonucleotide probe. Fragments containing the gene for S. griseus trypsin were characterized by hybridization and demonstration of proteolytic activity in S. lividans. Deduced amino acid sequence from the nucleotide sequence suggests that S. griseus trypsin is produced as a precursor, consisting of three portions; an amino-terminal pre sequence (32 amino acid residues), a pro sequence (4 residues), and the mature trypsin. The S. griseus trypsin consists of 223 amino acids with a computed molecular weight of 23,112. The existence of proline at the pro and mature junction suggests that the processing of S. griseus trypsin is non-autocatalytic.  相似文献   

4.
G Pearce  S Johnson    C A Ryan 《Plant physiology》1993,102(2):639-644
Six small molecular mass, wound-inducible trypsin and chymotrypsin inhibitor proteins from tobacco (Nicotiana tabacum) leaves were isolated to homogeneity. The isoinhibitors, cumulatively called tobacco trypsin inhibitor (TTI), have molecular masses of approximately 5500 to 5800 D, calculated from gel filtration analysis and amino acid content. The amino acid sequence of the entire 53 residues of one isoinhibitor, TTI-1, and the sequence of 36 amino acid residues from the N terminus of a second isoinhibitor, TTI-5, were determined. The two isoinhibitors differ only at residue 11, which is threonine in TTI-1 and lysine in TTI-5. The isoinhibitors are members of the potato inhibitor II family and show considerable identity with the small molecular mass members of this family, which include the eggplant inhibitor, two small molecular mass trypsin and chymotrypsin inhibitors from potatoes, and an inhibitor from pistils of the ornamental plant Nicotiana alata. Antibodies produced against the isoinhibitors in rabbits were used in radial immunoassays to quantify both the systemic wound inducibility of TTI in tobacco leaves and its constitutive levels in flowers.  相似文献   

5.
A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  相似文献   

6.
The effect of γ-toxin, a thermolysin-like metalloprotease of Clostridium perfringens, on the inactive ε-prototoxin produced by the same organism was examined. When the purified ε-prototoxin was incubated with the purified γ-toxin at 37 C for 2 hr, the 32.5-kDa ε-prototoxin was processed into a 30.5-kDa polypeptide, as determined by SDS-polyacrylamide gel electrophoresis. A mouse lethality test showed that the treatment activated the prototoxin: the 50% lethal doses (LD50) of the prototoxin with and without γ-toxin treatment were 110 and 70,000 ng/kg of body weight, respectively. The lethal activity of the prototoxin activated by γ-toxin was comparable to that with trypsin plus chymotrypsin and higher than that with trypsin alone: LD50 of the prototoxin treated with trypsin and trypsin plus chymotrypsin were 320 and 65 ng/kg of body weight, respectively. The ε-toxin gene was cloned and sequenced. Determination of the N-terminal amino acid sequence of each activated ε-prototoxin revealed that γ-toxin cleaved between the 10th and 11th amino acid residues from the N-terminus of the prototoxin, while trypsin and trypsin plus chymotrypsin cleaved between the 13th and 14th amino acid residues. The molecular weight of each activated ε-prototoxin was also determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The C-terminus deduced from the molecular weight is located at the 23rd or 30th amino acid residue from the C-terminus of the prototoxin, suggesting that removal of not only N-terminal but also C-terminal peptide is responsible for activation of the prototoxin.  相似文献   

7.
Two proteinase inhibitors, designated as inhibitors I and II, were purified from adzuki beans (Phaseolus angularis) by chromatographies on DEAE- and CM-cellulose, and gel filtration on a Sephadex G-100 column. Each inhibitor shows unique inhibitory activities. Inhibitor I was a powerful inhibitor of trypsin [EC 3.4.21.4], but essentially not of chymotrypsin ]EC 3.4.21.1]. On the other hand, inhibitor II inhibited chymotrypsin more strongly than trypsin. The molecular weights estimated from the enzyme inhibition were 3,750 and 9,700 for inhibitors I and II, respectively, assuming that the inhibitions were stoichiometric and in 1 : 1 molar ratio. The amino acid compositions of both inhibitors closely resemble those of low molecular weight inhibitors of other leguminous seeds: they contain large amounts of half-cystine, aspartic acid and serine, and little or no hydrophobic and aromatic amino acids. Inhibitor I lacks both tyrosine and tryptophan residues. The molecular weights were calculated to be 7,894 and 8,620 for inhibitors I and II, respectively. The reliability of these molecular weights was confirmed by the sedimentation equilibrium and 6 M guanidine gel filtration methods. On comparison with the values obtained from enzyme inhibition, it was concluded that inhibitor I and two trypsin inhibitory sites on the molecule, whereas inhibitor II had one chymotrypsin and one trypsin inhibitory sites on the molecule.  相似文献   

8.
Amino acid sequence of crayfish (Astacus fluviatilis) trypsin If   总被引:3,自引:0,他引:3  
The complete amino acid sequence of trypsin from the crayfish Astacus fluviatilis has been determined. The protein was fragmented with cyanogen bromide after S-carboxymethylation of the reduced disulfide bonds and by trypsin after S-carboxymethylation as well as after succinylation of lysine residues and aminoethylation of the reduced disulfide bonds. Peptides were purified by gel filtration and by reversed-phase high-performance liquid chromatography. Stepwise degradation was performed in a spinning cup sequencer. The enzyme contains 237 amino acid residues and has a molecular weight of 25 030. In contrast to bovine trypsin, it contains three rather than six disulfide bonds which are paired in the same fashion as those in trypsin from Streptomyces griseus. The constituents of the active site of bovine trypsin are present in corresponding positions in the crayfish enzyme. Crayfish trypsin shows 43.6% sequence identity with the bovine enzyme as compared to 40.0% identity with the S. griseus enzyme. The present analysis affords the first detailed view into the evolution of trypsins at the invertebrate level.  相似文献   

9.
DPTI II and DPTI IV, two trypsin inhibitors from duck pancreas, have been isolated by affinity chromatography on immobilized anhydrotrypsin, anion exchange and RP-HPLC. The complete amino acid sequence of both inhibitors was determined after reductive carboxymethylation and digestion with Staphylococcus aureus V8 protease or trypsin. The inhibitors were each found to be a single polypeptide chain comprised of 69 amino acid residues and their molecular masses were estimated at 7687 Da for DPTI II and 7668 Da for DPTI IV. The only difference in amino acid sequence between the two inhibitors is the replacement of Arg for His residue in the C-terminal position of DPTI IV.  相似文献   

10.
To elucidate the role of charged groups in expression of factor XI coagulant activity, the charged groups of purified human blood coagulation factor XI/XIa containing 125I-XI/XIa were derivatized: free amino groups by succinylation, guanido groups of arginine by reaction with phenylglyoxal hydrate, and free carboxyl groups by reaction with ethylenediamine. The modified proteins were tested for: 1) ability to adsorb to glass, 2) ability to be cleaved by trypsin or factor XII-high molecular weight kininogen, 3) coagulant activity. The amino group-modified factor XI had a significantly decreased ability to bind to glass; modification of arginine or carboxyl groups did not affect adsorption. Trypsin cleaved factor XI with modified free amino, guanido, or carboxyl groups. Factor XII-high molecular weight kininogen could cleave only the arginine-modified factor XI. Amino group-modified factor XI and carboxyl group-modified factor XI lost all their factor XI assay activity, whereas arginine-modified factor XI retained 50% of the original activity. Amino group-modified factor XI could not be activated by trypsin, but arginine-modified and carboxyl group-modified factor XI could be activated by trypsin to 50% of the original activity. Succinylation of the amino groups of factor XIa destroyed all its factor XIa activity. Arginine-modified and carboxyl group-modified factor XIa retained 50% of their factor XIa activity. We conclude that epsilon-amino groups are essential for adsorption; activation by factor XII-high molecular weight kininogen requires free amino and carboxyl but not guanido groups; free amino, carboxyl, and guanido groups in factor XIa all appear to be critical for interaction of factor XIa with factor IX.  相似文献   

11.
A high molecular weight protease inhibitor was purified from the egg white of Cuban crocodile (Crocodylus rhombifer). It inhibited the casein hydrolyzing activity of trypsin, subtilisin and papain. Its native molecular weight was 730,000 and it consisted of four subunits of equal molecular weight, each pair of which were disulfide bonded. The amino acid composition, circular dichroic spectrum and electron micrographs of this protein are also presented. Upon incubation with trypsin this protein yielded a fragment of Mr = 80,000, similar in size to the one known to originate from alpha 2-macroglobulin under the same conditions. The molecular parameters of this protein and the broad inhibitory activity towards thiol and serine proteases with different substrate specificities suggest that it is a protein closely related to alpha 2-macroglobulin in mammalian serum. From its native molecular weight and amino acid composition we believe that this protein is also a reptilian counterpart of the avian ovomacroglobulin described by Miller and Feeney (3).  相似文献   

12.
The trypsin inhibitor (WTI-1) purified from winged bean seeds is a Kunitz type protease inhibitor having a molecular weight of 19,200. WTI-1 inhibits bovine trypsin stoichiometrically, but not bovine alpha-chymotrypsin. The approximate Ki value for the trypsin-inhibitor complex is 2.5 X 10(-9) M. The complete amino acid sequence of WTI-1 was determined by conventional methods. Comparison of the sequence with that of soybean trypsin inhibitor (STI) indicated that the sequence of WTI-1 had 50% homology with that of STI. WTI-1 was separated into 2 homologous inhibitors, WTI-1A and WTI-1B, by isoelectric focusing. The isoelectric points of WTI-1A and WTI-1B were 8.5 and 9.4, respectively, and their sequences were presumed from their amino acid compositions.  相似文献   

13.
Alkaline trypsin protein of molecular mass 25,436 Da purified from the digestive juice of Bombyx mori larvae indicated strong antiviral activity against Bombyx mori nucleopolyhedrovirus (BmNPV) under in vitro conditions. Partial N-terminal amino acid sequence of the protein was determined and the cDNA was cloned based on the amino acid sequence. A homology search of the deduced amino acid sequence of the cDNA showed 55% identity with Helicoverpa armigera trypsin and the active site of this protein was completely conserved. Hence, the protein was designated B. mori trypsin (Bmtryp). The results suggest that Bmtryp, an insect digestive enzyme, can be a potential antiviral factor against BmNPV at the initial site of viral infection.  相似文献   

14.
15.
Two proteinase inhibitors, DE-1 and DE-3, were purified from Erythrina latissima seeds. Whereas DE-1 inhibits bovine chymotrypsin and not bovine trypsin, DE-3 inhibits trypsin but not chymotrypsin. The molecular weights and the amino acid compositions of the two inhibitors resemble the corresponding properties of the Kunitz-type proteinase inhibitors. The N-terminal primary structure of DE-3 showed homology with soybean trypsin inhibitor (Kunitz) and also with the proteinase inhibitors (A-II and B-II) from Albizzia julibrissin seed.  相似文献   

16.
An Apios americana trypsin inhibitor, AATI, was purified from Apios tubers by chromatography on DEAE Cellulofine A-500 and Sephadex G-50. The molecular mass of AATI was determined to be 6,437 Da by matrix-assisted laser desorption and ionization time-of-flight mass spectrometer (MALDI-TOF-MS). It showed strong inhibitory activity toward serine proteases, and the inhibition constants toward trypsin and chymotrypsin were 3.0 x 10(-9) M and 1.0 x 10(-6) M respectively. The inhibitory activity was not affected by heating at 80 degrees C for 2 h or by incubation at a wide range of pH values, suggesting that AATI has remarkable heat-stability and pH-stability. AATI cDNA consists of 552 nucleotides, and includes an open reading frame encoding a protein of 116 amino acids. The results of N-terminal amino acid sequencing of AATI and MALDI-TOF-MS analysis suggested that the deduced amino acid sequence had 50 and seven extra amino acids at the N- and C-termini respectively. Thus the mature AATI protein consists of 59 amino acid residues. Comparison of the amino acid sequence with those of the trypsin inhibitors from plants suggests that AATI belongs to the Bowman-Birk family and that it contains two possible reactive sites toward trypsin at Lys62 and Arg88.  相似文献   

17.
Trypsin(ogen) was isolated from the pyloric ceca of Greenland cod. Greenland cod trypsin catalyzed hydrolysis of N alpha-benzoyl-DL-arginine p-nitroanilide, tosyl arginine methyl ester and protein and was inhibited by the serine protease inhibitor PMSF and other well-known trypsin inhibitors. Greenland cod trypsin was more stable at alkaline pH than at acid pH; and was inactivated by relatively low thermal treatment. Like other trypsins, the enzyme was rich in potential acidic amino acid residues but poor in basic amino acid residues and had a molecular weight of 23,500; but it had less potential disulfide pairs, less alpha-helix and a lower H phi ave than other trypsins previously characterized. Reactions catalyzed by Greenland cod trypsin were not very responsive to temperature change, such that specific activity was relatively high at low reaction temperature.  相似文献   

18.
Acid stable trypsin inhibitor (ASTI), with a molecular weight of about 85,000 by gel filtration, specific activity of 1,498 U/mg protein and pI of 1.6, from renal failure patient plasma was first purified. The amino acid composition of the purified ASTI was found to be that of a Gly- and Glu-rich protein which lacked His, closely resembling that of urinary trypsin inhibitor. The NH2-terminal amino acid sequence was Ala-Val-Leu-Pro-Gln-Glu- Glu-Glu-Gly-X-Gly-Gly-Gly-Gln-Leu-Val-Thr-Glu-Val-Thr-Lys-Lys-Glu- Asp-Ser-Ser-Gln-Leu-Gly-Tyr-Ser-Ala-Gly-Pro.  相似文献   

19.
A trypsin inhibitor was isolated from pregnant mares' urine by adsorption on bentonite and elution with aqueous pyridine followed by batch DEAE-cellulose treatment and column chromatography. Final purification to an electrophoretically homogenous glycoprotein was achieved by gel permeation chromatography. This equine urinary trypsin inhibitor (E-UTI) is acid- and heat-stable, has a molecular weight of 22 to 23 kDa, an isoelectric point of 4.55, forms a 1:1 molar complex with trypsin and has serine as its N-terminal amino acid. The N-terminal amino acid sequence of this protein is almost identical with that of EI-14, the inhibitor obtained from horse serum by tryptic treatment, except for two extra amino acid residues, Ser-Lys- on the N-terminal end of E-UTI. In its isoelectric point E-UTI differs from EI-14 and the inhibitor from human urine.  相似文献   

20.
The amino acid sequence of human lymphotoxin derived from a 1788 lymphoblastoid cell line was determined. Peptide fragments obtained by trypsin, lysine-C peptidase, cyanogen bromide, and acetic acid cleavage of the intact protein were purified by reverse-phase high performance liquid chromatography and analyzed by amino acid composition and by automated Edman degradation. The protein is 171 amino acids long with a molecular weight of 18,664. It contains one asparagine-linked glycosylation site and lacks cysteine. The salient features of the amino acid sequence of lymphotoxin are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号