首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The retinal efferents of the catfish, Mystus vittatus, were investigated with the use of the horseradish peroxidase (HRP) technique. Most retinal fibres extended contralateral to the eye that had received HRP label, while a few fascicles projected to the ipsilateral side without decussation in the optic chiasma. The contralateral fibres projected to the suprachiasmatic nucleus, the nucleus opticus dorsolateralis, the nucleus of the posterior commissure, the nucleus geniculatus lateralis, pretectal nuclear complex, and to two layers of the optic tectum, i.e., stratum fibrosum et griseum superficiale and stratum griseum centrale. The accessory optic tract arose from the inner area of the optic tract and extended ventromedially to the accessory optic nucleus. The ipsilateral fascicles projected to almost all the above mentioned nuclei, but these projections were comparatively sparse. The ipsilateral retinal projection was restricted to the rostral tectum.  相似文献   

2.
Summary Using the ABC immunohistochemical method, we investigated the distribution of calbindinlike immunoreactive structures in the optic tectum of normal fish, Tinca tinca, and from normal and unilaterally eye-enucleated fish, Cyprinus carpio. In nonoperated individuals of both species the optic tectum contained numerous immunoreactive neurons with strongly positive somata located in the stratum periventriculare and a thick immunolabeled dendritic shaft ascending radially toward the stratum fibrosum et griseum superficiale. The retinorecipient layers contained many fibrous immunoreactive structures. Some varicose fibers, isolated or in small bundles, were localized to the stratum album centrale, especially in the dorsal tectal half. Unilateral eye removal produced the disappearance of the immunoreactive fibrous structures located in the retinorecipient layers of the tectum contralateral to the enucleation. The present work shows that calbindinlike immunoreactive substances are localized in specific neural circuits of the fish optic tectum and suggests that the calbindin-like immunoreactive fibers in the retinorecipient strata are of retinal origin.  相似文献   

3.
Summary The optic tectum of Calamoichthys calabaricus (Polypteriformes) shows a relatively complex vertical stratification, with six main layers and a varied neuronal typology. In particular, pyriform neurons in the well developed stratum griseum periventriculare and some multipolar neurons in the stratum griseum profundum represent the efferent elements of the tectum, while the optic and lemniscal inputs to the tectum converge in the plexiform sublayers of the stratum fibrosum et griseum superficiale. In the circuitry of the tectum some modulation is achieved by some of the polymorphic cells of the stratum griseum internum and by the horizontal cells of the outer layers. Notwithstanding some differences with respect to the teleost optic lobe (i.e., the absence of a torus longitudinalis; the lack of a stratum fibrosum marginale; the modest size of the stratum fibrosum profundum; the paucity of neurons in the stratum fibrosum et griseum superficiale; and the ill-defined separation of the layers of the afferent and efferent fibers), the optic tectum of Calamoichthys resembles the mesotectal type characteristic of teleosts, anurans and reptiles. It exhibits higher degree of organization than the optic tectum of the Chondrostei.  相似文献   

4.
郑磊  刘再群  宋海燕 《四川动物》2012,31(3):373-377
用免疫组化SABC法研究白介素-1α(IL-1α)、干扰素-γ(IFN-γ)、肿瘤坏死因子-α(TNF-α)和神经生长因子-β(NGF-β)在胚胎后期皖西白鹅中脑的表达与分布,并作统计学处理。结果发现,中央灰质层、中央白质层、室周灰质纤维层、半圆丘、峡核细胞胞质与突起阳性反应明显,其中峡核阳性反应最为明显,顶盖最不明显,且峡核大细胞部纤维着色明显;IL-1α在4种细胞因子中分布范围最广,阳性反应最强;IFN-γ与TNF-α阳性反应中,部分树突着色明显,且IFN-γ染色效果强于TNF-α;NGF-β的阳性突起与纤维较少。由结果可得,细胞因子可能是通过峡核-顶盖通路的作用,由峡核传递到顶盖;IL-1α在中枢神经系统中有重要作用;IFN-γ作为中枢神经系统介质的作用强于TNF-α。  相似文献   

5.
The optic tectum in birds receives visual information from the contralateral retina. This information is passed through to other brain areas via the deep layers of the optic tectum. In the present study the crossed tectobulbar pathway is described in detail. This pathway forms the connection between the optic tectum and the premotor area of craniocervical muscles in the contralateral paramedian reticular formation. It originates predominantly from neurons in the ventromedial part of stratum griseum centrale and to a lesser extent from stratum album centrale. The fibers leave the tectum as a horizontal fiber bundle, and cross the midline through the caudal radix oculomotorius and rostral nucleus oculomotorius. On the contralateral side fibers turn to ventral and descend caudally in the contralateral paramedian reticular formation to the level of the obex. Labeled terminals are found in the ipsilateral medial mesencephalic reticular formation lateral to the radix and motor nucleus of the oculomotor nerve, and in the contralateral paramedian reticular formation, along the descending tract. Neurons in the medial mesencephalic reticular formation in turn project to the paramedian reticular formation. Through the crossed tectobulbar pathway visual information can influence the activity of craniocervical muscles via reticular premotor neurons.  相似文献   

6.
Summary Autoradiographic analysis distinguished twelve primary retinal targets in the diencephalon and the mesencephalon of the Atlantic loggerhead sea turtle, Caretta caretta. While the majority of fibers terminate contralaterally, sparse labelling is seen over ipsilateral thalamic nuclei. The dorsal optic nucleus is the most expansive retinal target in the dorsal thalamus. Four nuclei ventral and one dorsal, to the dorsal optic nucleus, receive retinal input. Before terminating in the optic tectum, labelled fibers pass through the pretectum terminating in four nuclei. Within the superficial zone of the optic tectum, three terminal zones are recognized. A distinct accessory tegmental tract separates from the main optic tract terminating in the basal optic nucleus.While such a multiplicity of retinal targets occurs among other reptiles, birds and mammals, it is presently impossible to accurately recognize visual homologies among amniotic vertebrates.  相似文献   

7.
Summary Immunocytochemistry using antibodies against Met-enkephalin and Leu-enkephalin has demonstrated a group of large enkephalin-immunoreactive neurons in the nucleus of the rostral mesencephalic tegmentum (mRMT) of two teleost fish, Salmo gairdneri and Salmo salar. Injections of cobalt-lysine in the medial optic tectum retrogradely labeled the above group of tegmental neurons. Tegmental neurons were labeled only ipsilaterally to the injection site. This indicates that enkephalinergic neurons in the nRMT project to the optic tectum, and that at least some of the enkephalinergic axons observed in the optic tectum belong to a tegmento-tectal pathway. Comparable enkephalinergic pathways have been described in reptiles and birds, where pretectal-mesencephalic nuclei contribute to the enkephalin-containing fibers that project to the optic tectum.  相似文献   

8.
Glutamate was coupled via glutaraldehyde to bovine serum albumin. The conjugate was used for raising specific anti-glutamate antibodies. The purified antibody was used for immunostaining of chick cerebellum and optic tectum. Staining was intense in the molecular layer and in cell bodies of the granule cell layer. In the optic tectum a diffuse staining was detected in the superficial layers of stratum griseum fibrosum superficiale and in cell bodies especially in the layers a and e. Large cell bodies located in the stratum griseum centrale were also stained.  相似文献   

9.
S Kr?ger  J Walter 《Neuron》1991,6(2):291-303
During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane.  相似文献   

10.
The optic tectum is a major subdivision of the visual system in reptiles. Previous studies have characterized the laminar pattern, the neuronal populations, and the afferent and efferent connections of the optic tectum in a variety of reptiles. However, little is known about the interactions that occur between neurons within the tectum. This study describes two kinds of interactions that occur between one major class of neurons, the radial cells, in the optic tectum of Pseudemys using Nissl, Golgi and electron microscopic preparations. Radial cells have somata which bear long, radially oriented apical dendrites from their upper poles and short, basal dendrites from their lower poles. They are divided into two populations on the basis of the distribution of their somata in the tectum. Deep radial cells have somata densely packed in the stratum griseum periventriculare. Their plasma membranes form casual appositions. Middle radial cells have somata scattered throughout the stratum griseum centrale and stratum fibrosum et griseum superficiale and do not contact each other. The apical dendrites of both populations of radial cells participate in vertically oriented, dendritic bundles. The plasma membranes of the dendrites in these bundles form casual appositions in the deeper tectal layers and chemical, dendrodenritic synapses within the stratum fibrosum et griseum superficiale. The synapses have clear, round synaptic vesicles and slightly asymmetric membrane densities. Thus, radial cells interact via both casual appositions and chemical synapses. These interactions suggest that radial cells may form a basic framework in the tectum. Because both populations of radial cells extend into the stratum fibrosum et griseum superficiale and stratum opticum, they may receive input from some of the same tectal afferent systems. Because the deep radial cells alone have somata and dendrites in the deep tectal layers, they may receive additional inputs that the middle radial cells do not. Neurons in the two populations interact via chemical dendrodentritic synapses, thereby forming vertically oriented modules in the tectum.  相似文献   

11.
The expression patterns of three microtubule-associated proteins (MAP1A, MAP1B, and MAP2A&B) were investigated in the developing optic tectum. Expression of MAP1B and middle-molecular-weight peptide of neurofilament (NF-M) was first observed in the same mesencephalic cells on day 3 of incubation, indicating that neuroblasts had been produced. At day 5, MAP1A and MAP2A&B expression appeared in the cellular layer containing the first neuroblasts that differentiate into large multipolar cells. The NF-M+ neurites in the striatum album centrale (SAC) and the striatum opticum (SO) were MAP1B+ up to day 19, but the intensity of MAP1B immunoreactivity decreased with development. All three MAPs were expressed in large multipolar neurons in the developing stratum griseum centrale from the beginning of maturation. Stratum griseum et fibrosum centrale cellular layers, containing radially arranged piriform neurons, were MAP1A/MAP2A&B on day 11 but became MAP1A+/MAP2A&B+ during later stages. These results suggest that the timing of MAP expression in neuronal maturation of large multipolar cells differs from that of piriform cells. The expression of MAPs has revealed specific cellular events in the developing optic tectum. Based on our observations, the development of the optic tectum can be divided into four periods.  相似文献   

12.
Summary Retinofugal and retinopetal projections were investigated in the teleost fish Channa micropeltes (Channiformes) by means of the cobaltous lysine and horseradish peroxidase (HRP) tracing techniques. Retinofugal fibers cross completely in the optic chiasma. A conspicious lamination is present in those parts of the optic tract that give rise to the marginal branches of the optic tract. This layering of optic fibers continues in the marginal branches to mesencephalic levels. Retinal projections to the preoptic and hypothalamic regions are sparse; they are more pronounced in the area of pretectal nuclei. The medial pretectal complex and the cortical pretectal nucleus are more fully differentiated than in other teleostean species. Further targets include the thalamus and the optic tectum. The course of major optic sub-tracts and smaller fascicles is described. Retinopetal neurons are located contralaterally in a rostral and a caudal part of the nucleus olfactoretinalis, and in a circumscribed nucleus thalamoretinalis. The present findings are compared with reports on other teleost species.  相似文献   

13.
Summary The retinal projections were studied in the black piranah (Serrasalmus niger) with degeneration and autoradiographic methods. The projections are bilateral to the hypothalamic optic nucleus, the dorsomedial optic nucleus, corpus geniculatum ipsum of Meader (1934) and the optic tectum. Unilateral, crossed projections were traced to the pretectal nucleus and the cortical nucleus. The visual system of the black piranah is exceptionally well developed but has retained many primitive features including the extensive bilateral projections.  相似文献   

14.
Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.  相似文献   

15.
The electrophysiological and morphological features of visually driven neurons of the stratum griseum centrale of the zebra finch optic tectum were studied by extracellular recording and staining techniques. Stratum griseum centrale neuron responses are sustained in most cases. Receptive fields are big, up to 150 degrees of the visual field. The excitatory center (hot spot) varies in size from 1 degrees to 15 degrees. It can be mapped by small static stimuli, adapts slower than the surround, and has a shape comparable to the excitatory fields of upper-layer neurons. In contrast, the big surround shows responses only to small moving objects which elicit a typical pattern of alternating bursts and silent periods. Alternatively, the same stimuli elicit long-lasting bursts followed by strong adaption. Anatomically, stratum griseum centrale neurons are characterized by far reaching dendrites which terminate with "bottlebrush"-like endings in the upper retinorecipient layers. In addition, they are connected with retinorecipient structures by an interneuron located between layers 10 and 11. The role of the structure of inputs for the organization of the receptive fields is discussed.  相似文献   

16.
The development of the retino-tectal projection in Rana pipiens has been studied by the intraocular injection of small amounts of [3H]proline at late embryonic and at several larval stages. After survival periods varying from 1–24 hr the distribution of the radioactively labeled proteins in the axons of the retinal ganglion cells was studied autoradiographically. It is evident from the appearance of labeled proteins in the optic nerve and chiasm at late embryonic and early larval stages that there is a rapid phase of axonal transport at these stages and that some fraction of the materials transported in this phase are distributed to the tips of the growing axons.The first retinal fibers reach the contralateral optic tectum at embryonic Stage 22; at this stage they are confined to the rostrolateral portion of the tectum where the first tectal neurons are generated. At successively later stages the fibers appear to grow across the surface of the tectum in a general rostrolateral to caudomedial direction, reaching the dorsal part of the mid-tectum at larval Stage II and the lateral part of its caudal third by Stage V. However, it is not until relatively late larval stages (XVIII) that the fibers reach the caudomedial region of the tectum, and it is only at the time of metamorphosis (Stage XXV) that the retinal projection appears to cover the entire tectum.  相似文献   

17.
Summary Fibers undergoing Wallerian degeneration following tectal lesions were demonstrated with the Nauta and Fink-Heimer methods and traced to their termination. Four of the five distinct fiber paths originating in the optic tectum appear related to vision, while one is related to the mesencephalic nucleus of the trigeminus. The latter component of the tectal efferents distributes fibers to 1) the main sensory nucleus of the trigeminus, 2) the motor nucleus of the trigeminus, 3) the nucleus of tractus solitarius, and 4) the intermediate gray of the cervical spinal cord.The principal ascending bundle projects to the nucleus rotundus, three components of the ventral geniculate nucleus and the nucleus ventromedialis anterior ipsilaterally, before it crosses in the supraoptic commissure and terminates in the contralateral nucleus rotundus, ventral geniculate nucleus and a hitherto unnamed region dorsal to the nucleus of the posterior accessory optic tract.Fibers leaving the tectum dorso-medially terminate in the posterodorsal nucleus ipsilaterally and the stratum griseum periventriculare of the contralateral tectum. The descending fiber paths terminate in medial reticular cell groups and the rostral spinal cord contralaterally and in the torus and the lateral reticular regions ipsilaterally. The ipsilateral fascicle also issues fibers to the magnocellular nucleus isthmi.  相似文献   

18.
Using immunohistochemistry and a tracer technique we investigated the distribution in the optic tectum of turtles (Emys orbicularis and Testudo horsfieldi) of the calcium-binding proteins (CaBPr) parvalbumin (PV), calbindin (CB) and calretinin (CR) before and after labeling of the nucleus rotundus (Rot) with horseradish peroxidase. The optic tectum activity of the cytochrome oxidase (CO) was studied in parallel. In the principal link of the tectofugal visual pathway (central gray layer, SGC) in both chelonian species, the sparse PV-ir as well as CB- and CR-ir neurons were found significantly varying both in number and the intensity of immunoreactivity of their bodies and dendrites. In contrast, the superficial (SGFS) and deeper periventricular (SGP) tectal layers comprised numerous cells immunoreactive to all three CaBPr in different proportions. Only few retrogradely labeled tectorotundal SGC neurons expressed PV, CB or CR. The very large PV-ir neurons in SGC and SAC were not retrogradely labeled; morphologically they matched the efferent neurons with descending projections. SGC neurons of two chelonian species differed in the level of CO activity. Intense immunoreactivity to all three CaBPr and high CO activity were detected in both species in SGFS neuropil with some differences in sublaminar distribution patterns. The peculiarities of the CaBPr and CO activity distribution patterns in different segments of SGC neurons are discussed as related to the laminar organization of the turtle tectum and its retinal innervation. It is suggested that in the projection tectorotundal SGC neurons the CaBPr are concentrated mainly in their distal dendrites that contact retinal afferents in the superficial retinorecipient tectal layer.  相似文献   

19.
In adult goldfish, electrophysiological studies have shown that the retinotectal projection reorganizes, following removal of half of the tectum, to form a complete but compressed projection over the remaining half tectum. As a result, each fiber terminates more rostrally than normal. Electron microscopic studies suggest a competition between retinal fibers for a fixed number of synaptic sites. The current study examines whether retinal arbors in the compressed projection are smaller than normal in extent or branching and whether the fiber paths in the tectum show the rostral movements and the search strategy that the retinal fibers use. The caudal half tectum was removed without cutting retinal fibers except those at the cut edge. At 3 to 19 months afterward, retinal fibers were labeled with horseradish peroxidase. In whole-mounted tecta, fibers and terminals were drawn under camera lucida and compared with normal arbors. The axonal paths were also traced across the tectum to their termination sites. At 3 to 6 months (early stages of compression), the arbors were rather normal in appearance, although they were actually significantly larger (23%) than normal in linear extent, arborized somewhat deeper and had fewer branches (18%). The fibers normally terminating in the rostral tectum followed normal stereotyped paths, whereas those cut at the edge had grown back and forth loops (apparent searching behavior) with little branching. By 10 months when compression is complete, arbors were significantly smaller than normal (19%), were arborizing significantly deeper, and had significantly fewer branches (19%). The differences were more pronounced in arbors of coarse and medium caliber than in fine caliber axons. The axons still ran in stereotyped fascicles, but included an extrafascicular portion that, unlike any axons in normals, turned back in a rostral direction before branching. This striking effect, present even in far rostral tectum, indicated that arbors had been forced to move rostrally to accomodate those from the ablated half. The small effect on arbor extent suggests that this is influenced by factors other than the magnification factor of the map, perhaps postsynaptic dendritic extent. The increased depth of termination is consistent with the increased thickness of the retinal terminal layer. The decreased number of branches is consistent with the conclusion that the remaining fixed number of synaptic sites shared among the full complement of retinal fibers should result in fewer synapses per retinal fiber. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Protein kinase C (PKC) activation has been associated with synaptic plasticity in many projections, and manipulating PKC in the retinotectal projection strongly affects the activity-driven sharpening of the retinotopic map. This study examined levels of PKC in the regenerating retinotectal projection via immunostaining and assay of activity. A polyclonal antibody to the conserved C2 (Ca2+ binding) domain of classical PKC isozymes (anti-panPKC) recognized a single band at 79–80 kD on Western blots of goldfish brain. It stained one class of retinal bipolar cells and the ganglion cells in normal retina, as shown previously. Strong staining was not present in the optic fiber layer of retina or in optic nerve, optic tract, or terminal zone in tectum, with the exception of a single fascicle of optic nerve fibers that by their location and by L1 (E587) staining were identified as those arising from newly added ganglion cells at the retinal margin. Normal tectal sections showed dark staining of a subclass of type XIV neuron with somas at the top of the periventricular layer and an apical dendrite ascending to stratum opticum. In regenerating retina, swollen ganglion cells stained darkly and stained axons were seen in the optic fiber layer. In regenerating optic nerve (2–11 weeks postcrush), all fascicles of optic fibers stained darkly for both PKC and L1(E587). At 5 weeks postcrush, PKC staining could also be seen in the medial and lateral optic tracts and stratum opticum at the front half of the tectum and very lightly over the terminal zones. PKC activity was measured in homogenized tissues dissected from a series of fish with unilateral nerve crush from 1 to 5 weeks previously. Activity levels stimulated by phorbols and Ca2+ were measured by phosphorylation of a specific peptide and referred to levels measured in the opposite control side. Regeneration did not increase overall PKC activity in retina or tectum, but in optic nerve there was an 80% rise after the first week. The increased activity verifies that the increased staining in nerve represented an up-regulation of functional PKC during nerve regeneration. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 315–324, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号