首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypervariability of intronic simple (gt)n(ga)m repeats in HLA-DRB genes   总被引:2,自引:2,他引:0  
We have investigated the extent of DNA variability in intronic simple (gt)n(ga)m repeat sequences and correlated this to sequence polymorphisms in the flanking exon 2 of HLA-DRB genes. The polymerase chain reaction (PCR) was used to amplify a DNA fragment containing exon 2 and the repeat region of intron 2. The PCR products were separated on sequencing gels in order to demonstrate length hypervariability of the (gt)n(ga)m repeats. In a parallel experiment, the PCR products were cloned and sequenced (each exon 2 plus adjacent simple repeats) to characterize the simple repeats in relation to the HLA-DRB sequences. In a panel of 25 DRB1, DRB4, and DRB5 alleles new sequences were not detected. Restriction fragment length polymorphism (RFLP) subtyping of serologically defined haplotypes corresponds to translated DNA sequences in 85% of the cases, the exceptions involving unusual DR/DQ combinations. Many identical DRB1 alleles can be distinguished on the basis of their adjacent simple repeats. We found group-specific organization of the repeats: the DRw52 supergroup repeats differ from those of DRB1*0101, DRB4*0101, and DRB5*0101 alleles and from those of pseudogenes. Finally, we amplified baboon DNA and found a DRB allele with extensive similarity to DRB1 sequences of the DRw52 supergroup. The simple repeat of the baboon gene, however, resembles that of human pseudogenes. In addition to further subtyping, the parallel study of polymorphic protein and hypervariable DNA alleles may allow conclusions to be drawn on the relationships between the DRB genes and perhaps also on the theory of trans-species evolution.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M 34258.  相似文献   

2.
The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M77670 (DRB1 * AB3), M77671 (DRB1 * AB4), MM77672 (DRB1 * AB2), MM77673 (DRB1*A01), M81670 (DRB1*0410), and M81700 (DRB1 * 0411).  相似文献   

3.
The HLA-DRB genes of the human major histocompatibility complex constitute a multigene family with a varying number of DRB genes in different haplotypes. To gain further knowledge concerning the evolutionary relationship, the complete nucleotide sequence was determined for a region spanning introns 4 and 5 of the three DRB genes (DRB1*0301, DRB2 and DRB3*0101) from a DR52 haplotype and the single DRB gene (DRB1*08021) in the DR8 haplotype. These analyses identified an endogenous retroviral long terminal repeat element (ERV9 LTR3), inserted at identical positions in intron 5 of the functional DRB genes in these two haplotypes. Comparison of the nucleotide sequence from introns 4 and 5 including the ERV9 LTR elements revealed a strong similarity between the three expressed DRB genes. The DRB3*0101 and DRB1*08021 genes were most similar in this comparison. These findings provide further evidence for a separate duplication in a primordial DR52 haplotype followed by a gene contraction event in the DR8 haplotype. A homologous element was found in a chimpanzee DRB gene from a DR52 haplotype. This represents the first characterized ERV9 LTR element in a nonhuman species. The corresponding introns of the DRB genes in the DR4 haplotype contain no ERV9 LTRs. In contrast, these genes have insertions of distinct Alu repeats, implying distinct evolutionary histories of DR52 and DR53 haplotypes, respectively. Phylogenetic analyses of DRB introns from DR52, DR53, and DR8 haplotypes showed a close relationship between the DRB2 and DRB4 genes. Thus, the ancestral DR haplotype that evolved to generate the DR52 and DR53 haplotypes most likely shared a primordial common DRB gene.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession numbers X82660–X82663  相似文献   

4.
Nucleic acid sequences of the second exons of HLA-DRB1, –DRB3/4/5, –DQB1, and –DQA1 genes were determined from 43 homozygous cell lines, representing each of the known class II haplotypes, and from 30 unrelated Caucasian subjects, comprising 60 haplotypes. This systematic sequence analysis was undertaken in order to a) determine the existence of sequence microheterogeneity among cell lines which type as identical by methods other than sequencing; b) determine whether direct sequencing of class II genes will identify the presence of more extensive sequence polymorphism at the population level than that identified with other typing methods; c) accurately determine the molecular composition of the known class II haplotypes; and d) study their evolutionary relatedness by maximum parsimony analysis. The identification of seven previously unidentified haplotypes carrying five new allelic amino acid sequences suggests that sequence microheterogeneity at the population level may be more frequent than previously thought. Maximum parsimony analysis of these haplotypes allowed their evolutionary classification and indicates that the higher mutation rate at DRB1 compared to DQB1 loci in most haplotypic groups is inversed in specific haplotype lineages. Furthermore, the extent and localization of gene conversions and point mutations at class II loci in the evolution of these haplotypes is significantly different at each locus. Identification of additional HLA class II molecular microheterogeneity suggests that direct sequence analysis of class II HLA genes can uncover new allelic sequences in the population and may represent a useful alternative to current typing methodologies to study the effects of sequence allelism in organ transplantation.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M35890 through M35953.  相似文献   

5.
The Wilms' tumor gene WT1 is overexpressed in various tumors, and the WT1 protein has been demonstrated to be an attractive target antigen for cancer immunotherapy. A WT1 protein‐derived 16‐mer peptide, WT1332 (KRYFKLSHLQMHSRKH), which was naturally generated through processing in cells and could elicit Th1‐type CD4+ helper T cell responses with an HLA‐DRB1*0405‐restriction has previously been identified by us. In the present study, it has been demonstrated that WT1332 can induce WT1332‐specific CD4+ T cell responses with the restriction of not only HLA‐DRB1*0405 but also HLA‐DRB1*1501, ‐DRB1*1502, or ‐DPB1*0901. These HLA class II‐restricted WT1332‐specific CD4+ T cell lines produced IFN‐γ but neither IL‐4 nor IL‐10 with WT1332 stimulation, thus showing a Th1‐type cytokine profile. Furthermore, HLA‐DRB1*1501 or ‐DRB1*1502‐restricted WT1332‐specific CD4+ T cell lines responded to WT1‐expressing transformed cells in an HLA‐DRB1‐restricted manner, which is consistent with our previous finding that WT1332 is a naturally processed peptide. These results indicate that the natural peptide, WT1332, is a promiscuous WT1‐specific helper epitope. WT1332 is expected to apply to cancer patients with various types of HLA class II as a WT1‐specific helper peptide in combination with HLA class I‐restricted WT1 peptides.  相似文献   

6.
The distribution of the frequencies of BoLA-DRB3 gene alleles in the Iranian cattle breed Sistani was studied by the PCR-RFLP (“hemi-nested”) assay using restriction endonucleases RsaI, HaeIII and BstYI. In the examined cattle breed (65 animals) 32 alleles have been identified one of which being described for the first time (6.15% frequency). The nucleotide sequence of the polymorphic region of exon 2 of this allele has been determined and submitted in the GenBank database under accession number DQ486519. The submitted sequence has maximum homology (92%) with the previously described sequence DRB3-mRNA from Bos indicus (AccN X79346) and differs from it by 24 nucleotide substitutions which result in 16 amino acid substitutions. The peptide (on the basis of the reconstructed amino acid sequence) has 89% identity to the sequence encoded by the BIDRBF 188 locus (Bos indicus). The results obtained permit the sequence described by us to be considered as a new allele of the BoLA-DRB3 gene (DRB3.2 * X). The total frequency of the main six alleles (DRB3.2*8, *10, *11, *20, *34 and *X) occurring with a frequency of over 5% is about 60% in Iranian Sistani cattle. Fifteen alleles have <1% frequency. The highest frequency was observed for DRB3.2*8 allele (21.54%) like in other previously described breeds of Bos indicus (up to 23.07%). The Iranian breed Sistani has a high level of similarity by the spectrum of BoLA-DRB3 alleles and their frequencies to other Bos indicus breeds and significantly differs by these criteria from the Bos Taurus breeds. The Iranian Sistani herd under study includes alleles associated with to resistance to leukemia (DRB3.2*11 and *23) and to different forms of mastitis (DRB3.2* 2, *7, *11, *23 and *24) although their frequencies are low (from 0.77 to 5.37%). On the whole, a high level of diversity of BoLA-DRB3 gene alleles and the availability of alleles associated with resistance to different diseases makes this breed of interest for breeding practice. The article is published in the original.  相似文献   

7.
Conventional phylogenetic trees for the human leukocyte antigen (HLA)-DRB1 alleles constructed by the neighbor-joining (Saitou and Nei 1987) and UPGMA (Sneath and Sokal 1973) methods using nucleotide sequences of the DRB1 alleles suggest that DRB1*0701 may have diverged from other DRB1 alleles before the separation of the human and chimpanzee species, because of a large number of nucleotide changes in DRB1*0701 compared with any of the other DRB1 alleles. Here we show new evidence that the haplotypes centering on DRB1*0701 and DRB1*04 alleles are the most homologous. This suggests that these haplotypes have derived from the common ancestral haplotype, and that they have likely retained complete linkage disequilibrium even after the divergence of the DRB1*0701 and DRB1*04 allelic lineages. Together with the corresponding haplotype carrying chimpanzee DRB1*0701, which has a high sequence homology to HLA-DRB1*0701, these haplotypes reveal that: (1) the DRB1*04 allelic lineage may have been generated from the DRB1*0701 lineage after the separation of the human and chimpanzee species; (2) the DRB1*04 allelic lineage possibly has a higher substitution rate of DRB1 compared with pseudogene and neutral region; (3) there could be a significant difference in the substitution rate of DRB1 between the DRB1*0701 and DRB1*04 allelic lineages. Based on the difference between the present and previous results, we would like to propose that phylogenetic studies using not only nucleotide sequences of the DRB1 alleles but also haplotypes centering on the alleles should be conducted for understanding detailed phylogenetic relationships of the DRB1 alleles.  相似文献   

8.
Mhc-DRB genes of platyrrhine primates   总被引:3,自引:3,他引:0  
The two infraorders of anthropoid primates, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and the hominoids) are estimated to have diverged from a common ancestor 37 million years ago. The major histocompatibility complex class II DRB gene and haplotype polymorphism of the Catarrhini has been characterized in several recent studies. The present study was undertaken to obtain information on the DRB polymorphism of the Platyrrhini. Fifty-five complete exon 2 DRB sequences were obtained from six species of Platyrrhini representing both the Callitrichidae and the Cebidae families. Combined with the results of a parallel contig mapping study, our data indicate that at least three loci (DRB1*03, DRB3, and DRB5) are shared by the Catarrhini and the Platyrrhini. However, the three loci are occupied by functional genes in the former infraorder and mostly by pseudogenes in the latter. Instead of the pseudogenes, the Platyrrhini have evolved a new set of apparently functional genes — DRB11 and DRB*W12 through DRB*W19, which have thus far not been found in the Catarrhini. The DRB*W13, *W14, *W15, *W17, *W18, and *W19 genes seem to be restricted to the Cebidae family, whereas the DRB*W16 locus has so far been documented in the Callitrichidae family only. The DRB alleles of the cotton-top tamarin, and perhaps also those of the common marmoset (both members of the family Callitrichidae), are characterized by low nucleotide diversity, possibly indicating that they diverged from a common ancestral gene relatively recently. Correspondence to: J. Klein.  相似文献   

9.
The polymorphism at the HLA DRB1 and DQB1 loci in the population of Vojvodina was studied by PCR-SSP method. A total of 13 DRB1 and 5 DQB1 specificities displaying population-specific frequency distribution pattern were described. The most frequent HLA Class II alleles in Vojvodina population were: HLA-DRB1*11 (af = 0.30), −DRB1*04 (af = 0.28), −DRB1*07 (af = 0.21), −DRB1*13 and −DRB1*16 (af = 0.18), −DQB1*03 (af = 0.64), −DQB1*05 (af = 0.39) and −DQB1*02 (af = 0.35). The haplotypes with high frequencies (≥0.02) included HLA DRB1*11 DQB1*03 (0.0825), DRB1*04DQB1*03 (0.0725), DRB1*07DQB1*02 (0.0475). The allele DRB1*07 showed the strongest association with DQB1*02 (Δ = 0.0261, gC2 = 4.437) and DRB1*13 allele with DQB1*06 (Δ = 0.0222, gC2 = 4.247). The allelic frequencies and populations distance dendrogram revealed the closest relationship of Vojvodina population with Hungarians, Croat, and Greeks which can be the result of turbulent migration within this region and admixture with neighbour populations during the history.  相似文献   

10.
We determined the DNA sequence of the enzymatically amplified second exon of theDRB1 gene of theDRw12 haplotypes derived from three Japanese donors and found two distinct subtypes of theDRw12 haplotype. The two subtypes, designatedDRw12a andDrw12b, had single-base substitutions that predicted one amino acid change at residue number 67. The sequence of theDrw12a andDRw12b subtypes differed from those of the otherDR haplotypes, but in the first hypervariable region of theDRB1 gene the sequences were identical to those of theDRw8(Dw8.1) andDRw8(Dw8.3) haplotypes. TheDRw12a andDRw12b subtypes were detected in a wide range of Japanse donors by genotyping with sequence-specific oligonucleotide probes synthesized according to the DNA sequence of the two subtypes. Results of this study demonstrated that theDRw12 haplotypes in the Japanese population are genetically diverse, as many otherDR haplotypes are. The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M27509, M27510, M27511.  相似文献   

11.
To confirm and refine associations of human leukocyte antigen (HLA) genotypes with variable antibody (Ab) responses to hepatitis B vaccination, we have analyzed 255 HIV-1 seropositive (HIV+) youth and 80 HIV-1 seronegatives (HIV?) enrolled into prospective studies. In univariate analyses that focused on HLA-DRB1, -DQA1, and -DQB1 alleles and haplotypes, the DRB1*03 allele group and DRB1*0701 were negatively associated with the responder phenotype (serum Ab concentration ≥ 10 mIU/mL) (P = 0.026 and 0.043, respectively). Collectively, DRB1*03 and DRB1*0701 were found in 42 (53.8%) out of 78 non-responders (serum Ab <10 mIU/mL), 65 (40.6%) out of 160 medium responders (serum Ab 10–1,000 mIU/mL), and 27 (27.8%) out of 97 high responders (serum Ab >1,000 mIU/mL) (P < 0.001 for trend). Meanwhile, DRB1*08 was positively associated with the responder phenotype (P = 0.010), mostly due to DRB1*0804 (P = 0.008). These immunogenetic relationships were all independent of non-genetic factors, including HIV-1 infection status and immunodeficiency. Alternative analyses confined to HIV+ youth or Hispanic youth led to similar findings. In contrast, analyses of more than 80 non-coding, single nucleotide polymorphisms within and beyond the three HLA class II genes revealed no clear associations. Overall, several HLA-DRB1 alleles were major predictors of differential Ab responses to hepatitis B vaccination in youth, suggesting that T-helper cell-dependent pathways mediated through HLA class II antigen presentation are critical to effective immune response to recombinant vaccines.  相似文献   

12.
Microminipigs are extremely small‐sized, novel miniature pigs that were recently developed for medical research. The inbred Microminipigs with defined swine leukocyte antigen (SLA) haplotypes are expected to be useful for allo‐ and xenotransplantation studies and also for association analyses between SLA haplotypes and immunological traits. To establish SLA‐defined Microminipig lines, we characterized the polymorphic SLA alleles for three class I (SLA‐1, SLA‐2 and SLA‐3) and two class II (SLA‐DRB1 and SLA‐DQB1) genes of 14 parental Microminipigs using a high‐resolution nucleotide sequence‐based typing method. Eleven class I and II haplotypes, including three recombinant haplotypes, were found in the offspring of the parental Microminipigs. Two class I and class II haplotypes, Hp‐31.0 (SLA‐1*1502–SLA‐3*070102–SLA‐2*1601) and Hp‐0.37 (SLA‐DRB1*0701–SLA‐DQB1*0502), are novel and have not so far been reported in other pig breeds. Crossover regions were defined by the analysis of 22 microsatellite markers within the SLA class III region of three recombinant haplotypes. The SLA allele and haplotype information of Microminipigs in this study will be useful to establish SLA homozygous lines including three recombinants for transplantation and immunological studies.  相似文献   

13.
Analysis of a Japanese population by oligonucleotide genotyping revealed that one Japanese HLA-DRw14 allele had a DRB1 genotype different from that of the known HLA-DRw14-related alleles, DRB1 * 1401 (DRw14-Dw9) and DRB1 * 1402 (DRw14-Dw16). The second exon of the DRB1 gene of the novel DRw14 allele (designated DRB1-14c) was amplified enzymatically and sequenced after cloning intto a plasmid vector. The amino acid sequence of the first domain in the DR1 chain encoded in the DRB1-14c allele was more similar to that of the DRB1 * 1401 allele (three amino acid substitutions).than to that of the DRB1 * 1402 allele (six amino acid substitutions). No polymorphic amino acid residue that could explain the common serologic HLA-DRw14 specificity was identified among the sequences of the three DRw14-related alleles. Sequence-specific oligonucleotides (SSOs) were synthesized on the basis of the DRB1-14c nucleotide sequence and used for genotyping of the Japanese population. These SSOs served as useful probes for identifying the DRB1-14c allele in a wide range of donors.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M33693.  相似文献   

14.
We have studied DRB1 sequence polymorphisms associated with DR4 subtypes using DR4-specific DNA amplification and sequence-specific oligonucleotide probe (SSOP) hybridization. The 5 amplification primer was designed to hybridize with a unique sequence in the first hypervariable region (HVR) of the DRB1 second ex-on of all known DR4 alleles; the 3 primer was designed to hybridize with an intron sequence common to all DRB1 alleles. The specificity of the amplification step was demonstrated by double-blind testing of 105 selected DNA samples. Prospective SSOP typing of DR4 alleles was performed in 104 unrelated individuals known to be DR4-positive, including 13 who were DR4-homozygous. A DRB1 subtype corresponding with the previously defined DR4-associated specificities Dw4, Dw10, Dw13.1, Dw13.2, Dw14.1, Dw14.2, Dw15, and DwKT2 could be assigned for each of the 117 DR4 haplotypes tested. In most cases, DR4-homozygous, DRB1-heterozygous individuals could be genotyped with the panel of probes. In the course of our analysis, we identified two new DR4-related alleles, DRB1*04.CB (DRB1*0410)1 and DRB1*04.EC (DRB1*, 0411)2 which were recognized by their novel hybridization patterns. The DRB1 second exon sequence of DRB1*04.CB, is identical to DRB1*0405 except at codon 86 where GTG encodes valine instead of GGT encoding glycine. DRB1*04.EC is identical to DRB1*04.CB except at codon 74 where GAG encodes glutamic acid instead of GCG encoding alanine. Our results provide further evidence that SSOP hybridization is the most effective approach available for subtyping DR4 haplotypes and identifying unrecognized variants. A similar approach should be equally informative for subtyping other DR alleles.  相似文献   

15.
The human HLA-DR3 haplotype consists of two functional genes (DRB1*03 and DRB3*01) and one pseudogene (DRB2), arranged in the order DRB1... DRB2... DRB3 on the chromosome. To shed light on the origin of the haplotype, we sequenced 1480 nucleotides of the HLA-DRB2 gene and aong stretches of two other genes, Gogo-DRB2 from a gorilla, Sylvia and Patr-DRB2 from a chimpanzee, Hugo. All three sequences (HLA-DRB2, Gogo-DRB2, Patr-DRB2) are pseudogenes. The HLA-DRB2 and Gogo-DRB2 pseudogenes lack exon 2 and contain a twenty-nucleotide deletion in exon 3, which destroys the correct translational reading frame and obliterates the highly conserved cysteine residue at position 173. The Patr-DRB2 pseudogene lacks exons 1 and 2; it does not contain the twenty-nucleotide deletion, but does contain a characteristic duplication of that part of exon 6 which codes for the last four amino acid residues of the cytoplasmic region. When the nucleotide sequences of these three genes are compared to those of all other known DRB genes, the HLA-DRB2 is seen as most closely related to Gogo-DRB2, indicating orthologous relationship between the two sequences. The Patr-DRB2 gene is more distantly related to these two DRB2 genes and whether it is orthologous to them is uncertain. The three genes are in turn most closely related to HLA-DRBVI (the pseudogene of the DR2 haplotype) and Patr-DRB6 (another pseudogene of the Hugo haplotype), followed by HLA-DRB4 (the functional but nonpolymorphic gene of the DR4 haplotype). These relationships suggest that these six genes evolved from a common ancestor which existed before the separation of the human, gorilla, and chimpanzee lineages. The DRB2 and DRB6 have apparently been pseudogenes for at least six million years (myr). In the human and the gorilla haplotype, the DRB2 pseudogene is flanked on each side by what appear to be related genes. Apparently, the DR3 haplotype has existed in its present form for more than six myr.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M86691–94.  相似文献   

16.
In order to study the association of HLA-A, -B and/or DRB1, DQB1 and the nasopharyngeal carcinoma (NPC), 141 patients affected with NPC were typed for the HLA class I by serology method of microlymphocytotoxicity. Among these patients 101 were genotyped for HLA class II system by the PCR-SSP technique. HLA typing results were compared to those of 116 controls. We found that the HLA-A31 and -A33 antigens were significantly more expressed in patients than in the controls (P = 0.016 and 0.010, respectively) and the HLA-A19 antigen, was significantly more frequent in patients when compared to the controls (P = 0.007). The HLA-DRB1*03 and DRB1*13 alleles were significantly more frequent in patients as compared to the controls. The DRB1*01 allele was expressed with a frequency of 20.69% in the controls whereas it was only detected in 3.96% of the NPC patients. Furthermore, the DQB1*05 allele was expressed at a frequency which was significantly less important in affected patient (P = 0.03), whereas, the DQB1*02 allele was more frequent in patients (P = 0.643 × 10−4). Thus our study revealed a significant increase of HLA-A31, A33, A19, B16, B53 and DRB1*03, DRB1*13 and DQB1*02 alleles in our patients. These markers could play a predisposing role in the development of NPC. In contrast, a decrease of HLA-B14, -B35 and DRB1*01 and DQB1*05 alleles was found suggesting a likely protective effect.  相似文献   

17.
We have investigated the DNA polymorphism for the DQA1 promoter region (QAP) and HLA-class II DRB1, DQA1, and DQB1 genes in 178 central European patients with Systemic lupus erythematosus (SLE) using polymerase chain reaction and Dig-ddUTP labeled oligonucleotides. Increased frequencies of DRB1*02 and *03 are confirmed by DNA typing. In addition, the frequencies of DQA1*0501, *0102 and DQB1*0201, *0602 alleles are increased in the patients as compared to controls. The strongest association to SLE is found with DRB1*03 and DQB1*0201 alleles (p<10–7, p corr. <10–5 and p<10–6, p corr. <10–4, respectively). By investigating the DQA1 promoter region in the SLE patients we have detected nine different QAP variants. Increased frequencies of QAP1.2 and QAP4.1 are observed in patients as compared to controls (p <0.05, p corr. = n. s.). Analysis of linkage disquilibria demonstrates a very strong association between QAP variants and DQA1, DRB1 alleles. Certain QAP variants are completely associated with DQA1 and DRB1 alleles, whereas others can combine with different DQA1 and DRB1 alleles. All DRB1*02-positive patients and controls carry QAP1.2, and all DRB1*03-positive patients and controls carry QAP4.1. Conversely, the QAP1.2 variant appears only in DRB1*02 haplotypes, while the QAP4.1 variant can be observed in DRB1*03, *11, and *1303 haplotypes. Based on the strong linkage disequilibria between DRB1-DQA1-DQB1 genes and between DRB1-QAP-DQA1, we have deduced the four-point haplotypes for DRB1-QAP-DQA1-DQB1 in patients and controls. Two haplotypes DRB1*02-QAP1.2-DQA1*0102-DQB1*0602-and DRB1*03-QAP4.1-DQA1*0501-DQB1*0201 are significantly increased in patient as compared to controls (p<0.01, p corr. = n.s., RR = 1.8 and p <10–7, p corr. <10–5, RR = 3.1, respectively). The analysis of relative risks attributed to the various alleles of QAP, DQA1, and DQB1 as well as the investigation of the deduced DRB1-QAP-DQA1-DQB1 haplotypes leads to the conclusion that QAP4.1 and DQA1*0501 on the DR3 haplotypes are probably not involved in SLE susceptibility. There is no evidence for the involvement of DQ2 / dimers coded in transposition. Thus, susceptibility to SLE is on the DR3 haplotype most probably localized at DRB1 or telomeric of DRB1, while for the DR2 haplotype such orientation cannot be given. SLE study group members: M. Baur, A. Corvetta, H. Ehrfeld, J. Frey, J. R. Kalden, F. Krapf, B. Lang, G. G. Lange, K. Pirner, C. Rittner, E. Röther, P. Schneider, H. P. Seelig, S. Seuchter, W. Stangel, C. Specker, P. Späth, H. Deicher. Correspondence to: Z. Yao.  相似文献   

18.
19.
As is the case with many other autoimmune diseases, there is an association between vitiligo and HLA complex. HLA subtypes vary with racial/ethnic background. The purpose of this study was to determine which HLA class I antigens and HLA class II alleles are associated with Turkish vitiligo patients. Forty-one patients with vitiligo and 61 healthy control subjects were typed for HLA class II alleles. Thirty-three out of 41 patients with vitiligo and 100 healthy transplant donors were typed for HLA class I antigens. HLA DNA typing was performed by polymerase chain reaction/sequence specific primer method for class II. HLA typing for class I was performed by serological method. The frequency of HLA DRB1*03 was 0.6340 in patients compared to 0.2950 in controls (P = 0.0014). The frequency of HLA DRB1*04 was found to be 0.6830 in patients compared to 0.2950 in controls (P = 0.00026). The allele HLA DRB1*07 was present in 0.390 of patients compared to 0.0820 of the controls (P = 0.0004). A preventive antigen for the manifestation of vitiligo has not been identified in this study. Our findings suggest that DRB1*03, DRB1*04 and DRB1*07 alleles are genetic markers for general susceptibility to vitiligo in a Turkish population.  相似文献   

20.
The identification of 19 different HLA-DPB1 sequences implicates the existence of more DP specificities than can be typed for with cellular methods. How many of the DP sequences can be specifically recognized by T cells, and which of the polymorphic regions can contribute to the specificity of allorecognition, is not known. In order to investigate the distribution and the immunological relevance of recently described DPB1 alleles, we have typed a panel of 98 randomly selected Dutch Caucasoid donors for the HLA-DPB1 locus by oligonucleotide typing. Comparison of the typing results with primed lymphocyte typing (PLT) defined DP specificities shows an extremely good correlation. Moreover, additional alleles could be defined by oligonucleotide typing reducing the number of DP blanks in the panel. By selecting the appropriate responder stimulator combinations we were able to show that distinctive PLT reagents against oligonucleotide defined specificities DPB1*0401, DPB1*0402, DPB1*0901, and DPB1*1301 can be generated. To investigate in more detail which part of the DP molecule is responsible for the specificity of T-cell recognition, T-cell clones were generated against HLA-DPw3. The clones were tested for the recognition of stimulators carrying DPB1 alleles which had been defined by oligonucleotide typing and sequence analyses and which differed in a variable degree from DPB1*0301. The recognition patterns demonstrated that differences of one amino acid in polymorphic regions situated either in the beta sheets or alpha helix of the hypothetical model of the HLA class II molecule can eliminate T-cell recognition. Furthermore, sequence analyses revealed a new DPB1 allele designated DPB1*Oos.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M58608. The name DPB1*2001 has officially been assigned to the DPB*Oos allele by the WHO nomenclature Committee in March 1991. This follows the agreed policy that, subject to the conditions stated in the most recent Nomenclature Report (Bodmer et al. 1990b), names will be assigned as they are identified. Lists of such new names will be published in the following WHO nomenclature report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号