首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Glucosidase with a high regioselectivity for alpha-1,3-glucosidic linkages for hydrolysis and transglucosylation was purified from culture broth of Acremonium implicatum. The enzyme was a tetrameric protein (M.W. 440,000), of which the monomer (M.W. 103,000; monomeric structure was expected from cDNA sequence) was composed of two polypeptides (M.W. 51,000 and 60,000) formed possibly by posttranslational proteolysis. Nigerose and maltose were hydrolyzed by the enzyme rapidly, but slowly for kojibiose. The k(0)/K(m) value for nigerose was 2.5-fold higher than that of maltose. Isomaltose was cleaved slightly, and sucrose was not. Maltotriose, maltotetraose, p-nitrophenyl alpha-maltoside and soluble starch were good substrates. The enzyme showed high affinity for maltooligosaccharides and p-nitrophenyl alpha-maltoside. The enzyme had the alpha-1,3- and alpha-1,4-glucosyl transfer activities to synthesize oligosaccharides, but no ability to form alpha-1,2- and alpha-1,6-glucosidic linkages. Ability for the formation of alpha-1,3-glucosidic linkage was two to three times higher than that for alpha-1,4-glucosidic linkage. Eight kinds of transglucosylation products were synthesized from maltose, in which 3(2)-O-alpha-nigerosyl-maltose and 3(2)-O-alpha-maltosyl-maltose were novel saccharides.  相似文献   

2.
An alpha-glucosidase was solubilised from a mixed membrane fraction of Entamoeba histolytica and purified to homogeneity by a two-step procedure consisting of ion exchange chromatography in a Mono Q column and affinity chromatography in concanavalin A-sepharose. Although the enzyme failed to bind the lectin, this step rendered a homogenous and more stable enzyme preparation that resolved into a single polypeptide of 55 kDa after SDS-PAGE. As measured with 4-methylumbelliferyl-alpha-D-glucopyranoside (MUalphaGlc) as substrate, glycosidase activity was optimum at pH 6.5 with different buffers and at 45 degrees C. Although the enzyme preferentially hydrolysed nigerose (alpha1,3-linked), it also cleaved kojibiose (alpha1,2-linked), which was the second preferred substrate, and to a lesser extent maltose (alpha1,4), trehalose (alpha1,1) and isomaltose (alpha1,6). Activity on alpha1,3- and alpha1,2-linked disaccharides was strongly inhibited by the glycoprotein processing inhibitors 1-deoxynojirimycin and castanospermine but was unaffected by australine. Glucose and particularly 3-deoxy-D-glucose and 6-deoxy-D-glucose were strong inhibitors of activity, whereas 2-deoxy-D-glucose and other monosaccharides had no effect. Enzyme activity on MUalphaGlc was very sensitive to inhibition by diethylpyrocarbonate suggesting a critical role of histidine residues in enzyme catalysis. Other amino acid modifying reagents such as N-ethylmaleimide and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide showed a moderate effect or none at all, respectively. Results are discussed in terms of the possible involvement of this glycosidase in N-glycan processing.  相似文献   

3.
Trehalose supports the growth of Thermus thermophilus strain HB27, but the absence of obvious genes for the hydrolysis of this disaccharide in the genome led us to search for enzymes for such a purpose. We expressed a putative alpha-glucosidase gene (TTC0107), characterized the recombinant enzyme, and found that the preferred substrate was alpha,alpha-1,1-trehalose, a new feature among alpha-glucosidases. The enzyme could also hydrolyze the disaccharides kojibiose and sucrose (alpha-1,2 linkage), nigerose and turanose (alpha-1,3), leucrose (alpha-1,5), isomaltose and palatinose (alpha-1,6), and maltose (alpha-1,4) to a lesser extent. Trehalose was not, however, a substrate for the highly homologous alpha-glucosidase from T. thermophilus strain GK24. The reciprocal replacement of a peptide containing eight amino acids in the alpha-glucosidases from strains HB27 (LGEHNLPP) and GK24 (EPTAYHTL) reduced the ability of the former to hydrolyze trehalose and provided trehalose-hydrolytic activity to the latter, showing that LGEHNLPP is necessary for trehalose recognition. Furthermore, disruption of the alpha-glucosidase gene significantly affected the growth of T. thermophilus HB27 in minimal medium supplemented with trehalose, isomaltose, sucrose, or palatinose, to a lesser extent with maltose, but not with cellobiose (not a substrate for the alpha-glucosidase), indicating that the alpha-glucosidase is important for the assimilation of those four disaccharides but that it is also implicated in maltose catabolism.  相似文献   

4.
Trehalose synthase (TreS) catalyzes the reversible interconversion of trehalose (glucosyl-alpha,alpha-1,1-glucose) and maltose (glucosyl-alpha1-4-glucose). TreS was purified from the cytosol of Mycobacterium smegmatis to give a single protein band on SDS gels with a molecular mass of approximately 68 kDa. However, active enzyme exhibited a molecular mass of approximately 390 kDa by gel filtration suggesting that TreS is a hexamer of six identical subunits. Based on amino acid compositions of several peptides, the treS gene was identified in the M. smegmatis genome sequence, and was cloned and expressed in active form in Escherichia coli. The recombinant protein was synthesized with a (His)(6) tag at the amino terminus. The interconversion of trehalose and maltose by the purified TreS was studied at various concentrations of maltose or trehalose. At a maltose concentration of 0.5 mm, an equilibrium mixture containing equal amounts of trehalose and maltose (42-45% of each) was reached during an incubation of about 6 h, whereas at 2 mm maltose, it took about 22 h to reach the same equilibrium. However, when trehalose was the substrate at either 0.5 or 2 mm, only about 30% of the trehalose was converted to maltose in >or= 12 h, indicating that maltose is the preferred substrate. These incubations also produced up to 8-10% free glucose. The K(m) for maltose was approximately 10 mm, whereas for trehalose it was approximately 90 mm. While beta,beta-trehalose, isomaltose (alpha1,6-glucose disaccharide), kojibiose (alpha1,2) or cellobiose (beta1,4) were not substrates for TreS, nigerose (alpha1,3-glucose disaccharide) and alpha,beta-trehalose were utilized at 20 and 15%, respectively, as compared to maltose. The enzyme has a pH optimum of about 7 and is inhibited in a competitive manner by Tris buffer. [(3)H]Trehalose is converted to [(3)H]maltose even in the presence of a 100-fold or more excess of unlabeled maltose, and [(14)C]maltose produces [(14)C]trehalose in excess unlabeled trehalose, suggesting the possibility of separate binding sites for maltose and trehalose. The catalytic mechanism may involve scission of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose, as [(3)H]glucose incubated with TreS and either unlabeled maltose or trehalose results in formation of [(3)H]disaccharide. TreS also catalyzes production of a glucosamine disaccharide from maltose and glucosamine, suggesting that this enzyme may be valuable in carbohydrate synthetic chemistry.  相似文献   

5.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

6.
1. The maltase and glucoamylase activities of acid alpha-glucosidase purified from rabbit muscle exhibited marked differences in certain physicochemical properties. These included pH stability, inactivation by thiol-group reagents, inhibition by alphaalpha-trehalose, methyl alpha-d-glucoside, sucrose, turanose, polyols, glucono-delta-lactone and monosaccharides, pH optimum and the kinetics and pH-dependence of cation activation. 2. The results are interpreted in terms of the existence of at least two specific substrate-binding sites or sub-sites. One site is specific for the binding of maltose and probably other oligosaccharides. The second site binds polysaccharides such as glycogen. 3. The sites appear to be in close proximity, since glycogen and maltose are mutually inhibitory substrates and interact directly in transglucosylation reactions. 4. Acid alpha-glucosidase exhibited intrinsic transglucosylase activity. The enzyme catalysed glucosyl-transfer reactions from [(14)C]maltose (donor substrate) to polysaccharides (glycogen and pullulan) and to maltose itself (disproportionation). The pH optimum was 5.1, with a shoulder or secondary activity peak at pH5.4. The glucose transferred to glycogen was attached by alpha-1,4- and alpha-1,6-linkages. Three major oligosaccharide products of enzyme action on maltose (disproportionation) were detected. 5. The kinetics of enzyme action on [(14)C]maltose showed that the rate of transglucosylation increased in a sigmoidal fashion as a function of substrate concentration, approximately in parallel with a decrease in the rate of glucose release. 6. The results are interpreted to imply competitive interaction at a specific binding site between maltose and water as glucosyl acceptors. 7. The results are discussed in terms of the possible existence of multiple subgroups of glycogen-storage disease type II.  相似文献   

7.
The properties of brewer’s yeast α-glucosidase have been investigated. The enzyme was capable of hydrolyzing various α-glucosides and was active especially on aryl-α-glucosides in comparison with other α-glucosides and sugars. The rate of hydrolysis decreased in following order: phenyl-α-glucosides, sucrose, matlose and isomaltose.

The range of opt. temp, was 40~45°C and opt. pH, 6.5~7.0.

Cu++ and Hg++ inhibited strongly the enzyme activity and Zn++, moderately. The enzyme was suggested to be a sulfhydryl enzyme from the inhibition experiments by SH-reagents and the effects of glutathione on the activity.

The enzyme synthesized some oligosaccharides from maltose. As the transglucosidation products, nigerose, isomaltose, kojibiose and maltotriose were detected by paperchromatography.

Pure nigerose was separated by splitting maltose with amyloglucosidase from the mixture of maltose and nigerose and by use of successive carbon column chromatography.  相似文献   

8.
Glycoside hydrolase family (GH) 31 enzymes exhibit various substrate specificities, although the majority of members are α-glucosidases. Here, we constructed a heterologous expression system of a GH31 enzyme, Fjoh_4430, from Flavobacterium johnsoniae NBRC 14942, using Escherichia coli, and characterized its enzymatic properties. The enzyme hydrolyzed dextran and pullulan to produce isomaltooligosaccharides and isopanose, respectively. When isomaltose was used as a substrate, the enzyme catalyzed disproportionation to form isomaltooligosaccharides. The enzyme also acted, albeit inefficiently, on p-nitrophenyl α-D-glucopyranoside, and p-nitrophenyl α-isomaltoside was the main product of the reaction. In contrast, Fjoh_4430 did not act on trehalose, kojibiose, nigerose, maltose, maltotriose, or soluble starch. The optimal pH and temperature were pH 6.0 and 60 °C, respectively. Our results indicate that Fjoh_4430 is a novel GH31 dextranase with high transglucosylation activity.  相似文献   

9.
Near-homogeneous forms of glucoamylases I and II, previously purified from an industrial Aspergillus niger preparation, were incubated with D-glucose at a number of temperatures and pH values. Kinetics and equilibria of the formation of alpha,beta-trehalose, kojibiose, nigerose, maltose, isomaltose, panose, and isomaltotriose, which with isomaltotetraose were the only products formed, were determined. There was no difference in the abilities of GA I and GA II to form these products. Activation energies for the formation of maltose and panose were lower than those of the other Oligosaccharides. Relative rates of oligosaccharide production based on glucoamylase hydrolytic activity did not vary significantly between pH 3.5 and 4.5 but were lower at pH 5.5. Maltose was formed much faster than any other product. Equilibrium concentrations at higher dissolved solids concentrations decreased in the order isomaltose, isomaltotriose, kojibiose, nigerose, maltose, alpha, beta-Mrehalose, panose, and isomaltotetraose. They were not appreciably affected by changes in temperature or pH. A kinetic model based on adsorption of D-glucose and the seven di- and trisaccharides by the first three glucoamylase subsites was formulated. Oligosaccharide formation was simulated with the model, using equilibrium data gathered for this article and subsite binding energies and kinetic parameters for oligosaccharide hydrolysis measured earlier. Agreement of simulated and actual oligosaccharide formation data through the course of the reaction was excellent except at very high solid concentrations.  相似文献   

10.
S Ebisu  K Kato  S Kotani    A Misaki 《Journal of bacteriology》1975,124(3):1489-1501
Studies were made on the physical and chemical properties of polysaccharides synthesized by cell-free extracts of Streptococcus mutans, Streptococcus sanguis, and Streptococcus sp. and their susceptibilities to dextranases. Among the polysaccharides examined, insoluble glucans were rather resistant to available dextranase preparations, and the insoluble, sticky glucan produced by S. mutans OMZ 176, which could be important in formation of dental plaques, was the most resistant. By enrichment culture of soil specimens, using OMZ 176 glucans as the sole carbon source, an organism was isolated that produced colonies surrounded by a clear lytic zone on opaque agar plates containing the OMZ 176 glucan. The organism was identified as a strain of Flavobacterium and named the Ek-14 bacterium. EK-14 bacterium was grown in Trypticase soy broth, and an enzyme capable of hydrolyzing the OMZ 176 glucan was concentrated from the culture supernatant and purified by negative adsorption on a diethylaminoethyl-cellulose (DE-32) column and gradient elution chromatography with a carboxymethyl-cellulose (CM-32) column. The enzyme was a basic protein with an isoelectric point of pH 8.5 and molecular weight of 65,000. Its optimum pH was 6.3 and its optimal temperature was 42 C. The purified enzyme released 11% of the total glucose residues of the OMZ 176 glucan as reducing sugars and solubilized about half of the substrate glucan. The products were found to be isomaltose, nigerose, and nigerotriose, with some oligosaccharides. The purified enzyme split the alpha-1,3-glucan endolytically and was inactive toward glucans containing alpha-1,6, alpha-1,4, beta-1,3, beta-1,4, and/or beta-1,6 bonds as the main linkages.  相似文献   

11.
Near-homogeneous forms of glucoamylases I and II, previously purified from an industrial Aspergillus niger preparation, were used to hydrolyze a number of di- and trisaccharides linked by alpha-D-glucosidic bonds. Maximum rates and Michaelis constants were obtained at various temperatures and pH values with glucoamylase I for the disaccharides beta,alpha-trehalose, kojibiose, nigerose, maltose, and isomaltose and the trisaccharides panose and iso-maltotriose, and with glucoamylase II for maltose, maltotriose, and isomaltotriose. Maximum rates were highest and energies of activation were lowest for maltose, maltotriose, and panose, the only three substrates containing alpha-D-(1, 4)-glucosidic bonds. Michaelis constants were lowest and standard heats of binding were most negative for maltose and maltotriose. The variation of maximum rates and Michaelis constants with varying pH values suggested that two carboxyl groups were involved in substrate binding.  相似文献   

12.
Microsomal and cytosolic alpha-mannosidase activities, which hydrolyze alpha-1,2-mannosyl-mannose linkages in the Man5GlcNAc2 oligosaccharide, have been isolated from homogenates of mung bean hypocotyls. The alpha-1,2-mannosidase activities were readily distinguished from previously described aryl alpha-mannosidases by several criteria. They were optimally active in the presence of Ca2+ between pH 5.5 and 6, they were inhibited by Zn2+, and they had essentially no activity with p-nitrophenyl-alpha-mannoside. The microsomal and cytosolic alpha-1,2-mannosidases demonstrated specificity for oligosaccharides with terminal nonreducing alpha-1,2-mannosyl linkages, and they were inhibited by mannosyl-mannose disaccharides, with the inhibition decreasing in the order of alpha-1,2-greater than alpha-1,3-greater than alpha-1,6-mannosyl-mannose. The cytosolic alpha-1,2-mannosidase activity, which was present in the 100,000 g supernatant, was separated from the aryl alpha-mannosidase by ammonium sulfate precipitation. The microsomal alpha-1,2-mannosidase, which was tightly associated with the particulate fraction, was solubilized with Triton X-100 and 0.2 M KCl. The two alpha-1,2-mannosidase activities were readily differentiated by gel-filtration chromatography. The solubilized microsomal enzyme chromatographed in approximately the same position as a Mr 460,000 globular protein whereas the cytosolic enzyme was eluted in a retarded position, indicating a much smaller protein.  相似文献   

13.
The early steps of glycoprotein biosynthesis involve processing of the N-glycan core by endoplasmic reticulum α-glucosidases I and II which sequentially trim the outermost α1,2-linked and the two more internal α1,3-linked glucose units, respectively. We have demonstrated the presence of some components of the enzymic machinery required for glycoprotein synthesis in Sporothrix schenckii, the etiological agent of human and animal sporotrichosis. However, information on this process is still very limited. Here, a distribution analysis of α-glucosidase revealed that 38 and 50% of total enzyme activity were present in a soluble and in a mixed membrane fraction, respectively. From the latter, the enzyme was solubilized, purified to apparent homogeneity and biochemically characterized. Analysis of the enzyme by denaturing electrophoresis and size exclusion chromatography revealed molecular masses of 75.4 and 152.7 kDa, respectively, suggesting a homodimeric structure. Purified α-glucosidase cleaved the fluorogenic substrate 4-methylumbelliferyl-α-d-glucopyranoside with high affinity as judged from Km and Vmax values of 0.3 μM and 250 nmol of MU/min/mg protein, respectively. Analysis of linkage specificity using a number of glucose α-disaccharides as substrates demonstrated a clear preference of the enzyme for nigerose, an α1,3-linked disaccharide, over other substrates such as kojibiose (α1,2), trehalose (α1,1) and isomaltose (α1,6). Use of selective inhibitors of processing α-glucosidases such as 1-deoxynojirimycin, castanospermine and australine provided further evidence of the possible type of α-glucosidase. Accordingly, 1-deoxynojirimycin, a more specific inhibitor of α-glucosidase II than I, was a stronger inhibitor of hydrolysis of 4-methylumbelliferyl-α-d-glucopyranoside and nigerose than castanospermine, a preferential inhibitor of α-glucosidase I. Inhibition of hydrolysis of kojibiose and maltose by 1-deoxynojirimycin and castanoespermine was significantly lower than that of nigerose. Taken together, these properties are consistent with a type II-like α-glucosidase probably involved in N-glycan processing. To our knowledge, this is the first report of such an activity in a truly dimorphic fungus.  相似文献   

14.
The formation of 1,6-anhydro-β-d-glucopyranose and several d-glucosyl oligosaccharides has been observed during the action of a purified, fungal glucosyltransferase (EC 2.4.1.24) on maltose. Such products are synthesized by a transglucosylation mechanism involving the formation of a d-glucosyl-enzyme complex and the displacement of the d-glucosyl group by appropriate acceptor-substrates. The formation of the 1,6-anhydro bond is a novel type of transfer reaction and occurs by displacement of the enzyme from the d-glucosyl-enzyme complex by the proton of the primary hydroxyl group of the same glucosyl group. This reaction is characterized by inversion of configuration at the position of glucosidic bond-cleavage of the substrate. Synthesis of the d-glucosyl oligosaccharides occurs by displacement of the d-glucosyl groups from the enzyme by suitable acceptor-substrates. In these cases, the reactions are characterized by retention of configuration of the d-glucosidic bonds of the substrate. The list of oligosaccharides produced from maltose includes nigerose, kojibiose, isomaltose, maltotriose, panose, isomaltotriose, and 6-O-d-glucosyl-panose. The identity of these compounds has been established by methylation analysis and enzymic hydrolysis. d-Glucose is also a product of the reaction and arises from both the reducing and the non-reducing groups of maltose.  相似文献   

15.
Glucosidase II was purified approximately 1700-fold to homogeneity from Triton X-100 extracts of mung bean microsomes. A single band with a molecular mass of 110 kDa was seen on sodium dodecyl sulfate gels. This band was susceptible to digestion by endoglucosaminidase H or peptide glycosidase F, and the change in mobility of the treated protein indicated the loss of one or two oligosaccharide chains. By gel filtration, the native enzyme was estimated to have a molecular mass of about 220 kDa, suggesting it was composed of two identical subunits. Glucosidase II showed a broad pH optima between 6.8 and 7.5 with reasonable activity even at 8.5, but there was almost no activity below pH 6.0. The purified enzyme could use p-nitrophenyl-alpha-D-glucopyranoside as a substrate but was also active with a number of glucose-containing high-mannose oligosaccharides. Glc2Man9GlcNAc was the best substrate while activity was significantly reduced when several mannose residues were removed, i.e. Glc2Man7-GlcNAc. The rate of activity was lowest with Glc1Man9GlcNAc, demonstrating that the innermost glucose is released the slowest. Evidence that the enzyme is specific for alpha 1,3-glucosidic linkages is shown by the fact that its activity on Glc2Man9GlcNAc was inhibited by nigerose, an alpha 1,3-linked glucose disaccharide, but not by alpha 1,2 (kojibiose)-, alpha 1,4(maltose)-, or alpha 1,6 (isomaltose)-linked glucose disaccharides. Glucosidase II was strongly inhibited by the glucosidase processing inhibitors deoxynojirimycin and 2,6-dideoxy-2,6-imino-7-O-(beta-D- glucopyranosyl)-D-glycero-L-guloheptitol, but less strongly by castanospermine and not at all by australine. Polyclonal antibodies prepared against the mung bean glucosidase II reacted with a 95-kDa protein from suspension-cultured soybean cells that also showed glucosidase II activity. Soybean cells were labeled with either [2-3H]mannose or [6-3H]galactose, and the glucosidase II was isolated by immunoprecipitation. Essentially all of the radioactive mannose was released from the protein by treatment with endoglucosaminidase H. The labeled oligosaccharide(s) released by endoglucosaminidase H was isolated and characterized by gel filtration and by treatment with various enzymes. The major oligosaccharide chain on the soybean glucosidase II appeared to be a Man9(GlcNAc)2 with small amounts of Glc1Man9(GlcNAc)2.  相似文献   

16.
An enzyme hydrolyzing nigeran (alternating alpha-1,3- and alpha-1,4-linked glucan) was purified from the culture filtrate of Streptomyces sp. J-13-3, which lysed the cell wall of Aspergillus niger, by percipitation with ammonium sulfate and column chromatographies on DEAE-Sephadex A-50, CM-Sephadex C-50, chromatofocusing, and Sephadex G-100. The final preparation was homogenous in polyacrylamide gel electrophoresis (PAGE). The molecular weight of the enzyme was 68,000 by SDS-PAGE and gel filtration. The optimum pH and temperature for the enzyme activity were 6.0 and 50 degrees C, respectively. The enzyme was stable in the pH range from 6.0 to 8.0 and up to 50 degrees C. The enzyme activity was inhibited significantly by Hg+, Hg2+, and p-chloromercuribenzoic acid. The Km (mg/ml) for nigeran was 3.33. The enzyme specifically hydrolyzed nigeran into nigerose and nigeran tetrasaccharide by an endo-type of action, indicating it to be a mycodextranase (EC 3.2.1.61) that splits only the alpha-1,4-glucosidic linkages in nigeran.  相似文献   

17.
The transglucosylation action of buckwheat α-glucosidase on soluble starch, maltose maltotriose and maltotetraose are described and discussed. The transglucosylation products of soluble starch were isolated by carbon-Celite column chromatography and by paper chromatography. Among the products were found follows: nigerose, maltose, kojibiose and isomaltose as disaccharides and 2-α-isomaltosylglucose, 2-α-nigerosylglucose, nigerotriose. 3-α-maltosylglucose and maltotriose as trisaccharides.

Furthermore, the existence of 6-α-nigerosylglucose, 4-α-kojibiosylglucose, panose, isopanose and 3-α-isomaItosylglucose was suspected. A new trisaccharide, 2-α-nigerosylglucose which was obtained in a crystalline form (monohydrate) melted at 186~188°C and gave [α]D+ 178.3 (c = 0.6, in water).

These experimental results on the reaction products seem to indicate that the activated glucosyl group from the substrate (starch, in this case) is transferred to any position of C–2,3,4 or 6 of glucose released from the substrate and the same type of transglucosylation occurrs upon the non-reducing terminal of disaccharides just produced, which leads to the formation of various kinds of trisaccharide, tetrasaccharide etc. The synthesis of α-oligosaccharides from free glucose could not be detected by paper chromatography.  相似文献   

18.
The proteins encoded in the yicI and yihQ gene of Escherichia coli have similarities in the amino acid sequences to glycoside hydrolase family 31 enzymes, but they have not been detected as the active enzymes. The functions of the two proteins have been first clarified in this study. Recombinant YicI and YihQ produced in E. coli were purified and characterized. YicI has the activity of alpha-xylosidase. YicI existing as a hexamer shows optimal pH at 7.0 and is stable in the pH range of 4.7-10.1 with incubation for 24h at 4 degrees C and also is stable up to 47 degrees C with incubation for 15 min. The enzyme shows higher activity against alpha-xylosyl fluoride, isoprimeverose (6-O-alpha-xylopyranosyl-glucopyranose), and alpha-xyloside in xyloglucan oligosaccharides. The alpha-xylosidase catalyzes the transfer of alpha-xylosyl residue from alpha-xyloside to xylose, glucose, mannose, fructose, maltose, isomaltose, nigerose, kojibiose, sucrose, and trehalose. YihQ exhibits the hydrolysis activity against alpha-glucosyl fluoride, and so is an alpha-glucosidase, although the natural substrates, such as alpha-glucobioses, are scarcely hydrolyzed. alpha-Glucosidase has been found for the first time in E. coli.  相似文献   

19.
A highly specific, sensitive, and convenient fluorescence assay for alpha-1,2-mannosidases involved in glycoprotein processing reactions is described. The assay utilizes a coupled enzyme system to determine the amount of free mannose liberated from the disaccharide O-methyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside by the alpha-1,2-mannosidase. The assay was used to determine the substrate specificity of a calcium ion-activated alpha-1,2-mannosidase purified from rabbit liver microsomes. The microsomal mannosidase was specific for hydrolysis of the alpha-1,2 linkage. The mannosyl linkages in alpha-1,3- and alpha-1,6-linked methyl-disaccharides, in methyl-alpha-D-mannopyranoside, and in yeast mannan were hydrolyzed at rates of 2% or less than that noted with the alpha-1,2-linked disaccharide. Mannosidase activity was linear with time and was proportional to enzyme concentration. The Km for the alpha-1,2-linked methyl-disaccharide is 0.5 mM.  相似文献   

20.
A soluble α-glucosidase presumably involved in the general carbohydrate metabolism was purified from E. histolytica trophozoites by a three-step procedure consisting of ion exchange, size exclusion and adsorption chromatographies in columns of Mono Q, Sepharose CL-6B and hydroxyapatite, respectively. After the last step, the enzyme was enriched about 673-fold over the starting material with a yield of 18%. SDS-PAGE revealed the presence in the purified preparations of two polypeptides of comparable intensity exhibiting molecular weights of 43 and 68 kDa. These results and the molecular weight of 243 kDa determined by gel filtration, suggest that the native enzyme is a heterotetramer consisting of two copies of each subunit. Some properties were investigated to determine the role of this activity in glycoprotein processing. Analysis of linkage specificity using a number of substrates indicated a preferential hydrolysis of isomaltose (α1,6) with much less activity on nigerose (α1,3) and maltose (α1,4). Trehalose (α1,1), kojibiose (α1,2) and cellobiose (β1,4) were not cleaved at all. As expected, isomaltose competed away hydrolysis of 4-methylumbelliferyl-α-D-glucoside with a higher efficiency than nigerose and maltose. Hydrolysis of the fluorogenic substrate was competitively inhibited by glucose and 6-deoxy-D-glucose with comparable Ki values of 0.23 and 0.22 mM, respectively. Sensitivity of the enzyme to the α-glucosidase inhibitors 1-deoxynojirimycin, castanospermine and australine largely depended on the substrate utilized to determine activity. 1-Deoxynojirimycin and castanospermine inhibited isomaltose hydrolysis in a competitive manner with Ki values of 1.2 and 1.5 μM, respectively. The properties of the purified enzyme are consistent with a general glycosidase probably involved in glycogen metabolism. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号