首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bradyrhizobium japonicum USDA 125-Sp, USDA 138, and USDA 138-Sm had been used as inoculants for soybean (Glycine max (L.) Merr.) in soils previously free of B. japonicum. At 8 to 13 years after their release, these strains were reisolated from soil samples. A total of 115 isolates were obtained through nodules, and seven colonies were obtained directly by a serological method. The stability of the inoculants was confirmed by comparing the reisolated cultures with their respective parental strains which had been preserved by being lyophilized or stored on a yeast extract-mannitol agar slant at 4°C. Comparisons were made on morphological and serological characters, carbon compound utilization (8 tested), intrinsic antibiotic resistance (9 tested), and enzymatic activity (19 tested). Mucous and nonmucous isolates of serogroup 125 were analyzed for symbiotic effectiveness and restriction fragment hybridization with a DNA probe. Our data suggest that the B. japonicum inoculants have survived for up to 13 years in the soils without significant mutation except for two reisolates with a slightly increased kanamycin resistance level.  相似文献   

2.
The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobium japonicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined. The number of soybean rhizobia in the sludge-amended soils was found to increase with increasing rates of sludge. Soybean rhizobia strains from 11 serogroups were identified in the soils; however, no differences in serogroup distribution or proportion of resistant strains were found between the soils. Thus, the application of heavy metal-containing sewage sludge did not have a long-term detrimental effect on soil rhizobial numbers, nor did it result in a shift in nodule serogroup distribution.  相似文献   

3.
The symbiotic potential of Bradyrhizobium japonicum isolates indigenous to seven Korean soils was evaluated by inoculating soybeans with 10- and 1,000-fold-diluted soil suspensions (whole-soil inocula). At both levels, significant differences in the symbiotic potential of the indigenous B. japonicum isolates were demonstrated. The relationship between rhizobial numbers in the whole-soil inocula (x) and nitrogen fixation parameters (y) was best predicted by a straight line (y = a + bx) when the numbers in the inocula were 100 to 10,000 ml-1, while the power curve (y = axb) predicted the variation when the numbers were 1 to 100 ml-1. Thirty isolates from three soils showed wide differences in effectiveness (measured as milligrams of shoot N per plant), and several were of equal or greater effectiveness than reference strain B. japonicum USDA 110 on soybean cultivars Clark and Jangbaekkong. On both of the soybean cultivars grown in a Hawaiian mollisol, the Korean B. japonicum isolate YCK 213 and USDA 110 were of equal effectiveness; USDA 110 was the superior strain in colonization (nodule occupancy). Korean isolates YCK 117 and YCK 141 were superior colonizers compared with USDA 110. However, B. japonicum USDA 123 was the superior colonizer compared with isolates YCK 213, YCK 141, and YCK 117. In an immunoblot analysis of 97 indigenous Korean isolates of B. japonicum, 41% fell into the USDA 110 and USDA 123 serogroups. Serogroups USDA 110 and USDA 123 were represented in six of the seven soils examined. In one Korean soil, 100% of the B. japonicum isolates reacted only with antisera of YCK 117, an isolate from the same soil.  相似文献   

4.
K. Killham 《Plant and Soil》1987,101(2):267-272
The effect of two isoflavonoids, coumestrol and daidzein which are present in aseptically grown roots and root exudates of soybean, was tested on some rhizospheric microorganisms. It was found that coumestrol promotes the growth ofR. japonicum USDA 138 (about 30%) andR. leguminosarum (about 15%) whereas it inhibits the growth ofAgrobacterium tumefaciens (about 50%) andPseudomonas sp. (about 20%). The following microorganisms were unaffected by this molecule:R. japonicum W505,Agrobacterium radiobacter, Micrococcus luteus andCryptococcus laurentii. It was found that daidzein promotesR. japonicum USDA 138 growth (about 20%) and inhibitsPseudomonas sp. growth (about 20%); other microorganisms were unaffected. In addition, coumestrol favoured the formation of ‘coccoids’ cells byRhizobium japonicum USDA 138 which could be the infective state of this strain. It seems that this compound is able to help nodulation of soybean by aRhizobium strain. This result supports the work of Peterset al. (1986) and Redmondet al. (1986) who show that flavones present in plant exudates induces expression of nodulation genes in Rhizobium.  相似文献   

5.
Twenty recently obtained field isolates of Bradyrhizobium japonicum serogroup 123 were tested for their nodule mass production on the standard commercial soybean (Glycine max (L.) Merr. cv. Williams) and on two soybean plant introduction (PI) genotypes previously determined to restrict nodulation by strain USDA 123. Four of the field isolates showed similar restricted nodulation on the two genotypes, while all 20 isolates produced a normal amount of nodules on G. max cv. Williams. Serological analyses with adsorbed fluorescent antibodies showed that members of the 123 serotype ranked low in nodulation of the two PIs, in contrast to members of serotypes 127 and 129. Competition studies on the PIs indicated that isolates which were restricted were not competitive for nodule occupancy against strain USDA 110. However, unrestricted isolates of serogroup 123 were very competitive against USDA 110. On G. max cv. Williams, all serogroup 123 isolates tested were very competitive against USDA 110.  相似文献   

6.
Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles.  相似文献   

7.
The effects of preexposure of soybean (Glycine max L. Merrill) roots to Rhizobium japonicum strains and subsequent establishment of other strains in the nodules were investigated by using combinations of effective strains (USDA 110 and USDA 138) and effective-ineffective strains (USDA 110 and SM-5). Strain USDA 110 was a better competitor than either USDA 138 or SM-5 on cultivars Lee and Peking. However, when either of the two less-competitive strains was inoculated into 2-day-old seedlings before USDA 110 was, their nodule occupancy increased significantly on both cultivars. With USDA 138 as the primary inoculum and USDA 110 delayed for 6, 48, and 168 h, the incidence of USDA 138 nodules increased on cultivar Peking from 6% (at zero time) to 28, 70, and 82% and on cultivar Lee from 17% (at zero time) to 32, 88, and 95% for the three time delays, respectively. Preexposure of 2-week-old roots of cultivar Lee to USDA 138 had essentially the same effect: the incidence of USDA 138 nodules increased from 23% at zero time to 89 and 97% when USDA 110 was delayed for 24 and 72 h, respectively. When the ineffective strain SM-5 was used as the primary inoculum, followed by USDA 110 72 h later, the percentage of nodules containing SM-5 increased from 7 to 76%. These results indicate that the early events in the nodulation process of soybeans are perhaps the most critical for competition among R. japonicum strains.  相似文献   

8.
Four local rhizobia isolates selected after two screening experiments and five USDA Bradyrhizobium japonicum strains were estimated for N2 fixation in soybean using the 15N isotope dilution technique. Strain USDA 110 was superior to the local isolates in nodulation and N2 fixation when inoculated onto soybean cv TGX 1497-ID in a Nigerian soil and could therefore be used as an inoculant for enhanced N2 fixation in soybean in Nigeria.  相似文献   

9.
The plasticity of rhizobial genomes is far greater than previously thought, with complex genomic recombination events that may be accelerated by the often stressful environmental conditions of the tropics. This study aimed at evaluating changes in soybean rhizobia due to adaptation to inhospitable environmental conditions (high temperatures, drought, and acid soils) in the Brazilian Cerrados. Both the host plant and combinations of four strains of soybean Bradyrhizobium were introduced in an uncropped soil devoid of rhizobia capable of nodulating soybean. After the third year, seeds were not reinoculated. Two hundred and sixty-three isolates were obtained from nodules of field-grown soybean after the seventh year, and their morphological, physiological, serological, and symbiotic properties determined, followed by genetic analysis of conserved and symbiotic genes. B. japonicum strain CPAC 15 (same serogroup as USDA 123) was characterized as having high saprophytic capacity and competitiveness and by the seventh year represented up to 70% of the cultivable population, in contrast to the poor survival and competitiveness of B. japonicum strain CPAC 7 (same serogroup as CB 1809). In general, adapted strains had increased mucoidy, and up to 43% of the isolates showed no serological reaction. High variability, presumably resulting from the adaptation to the harsh environmental conditions, was verified in rep-PCR (polymerase chain reaction) profiles, being lower in strain CPAC 15, intermediate in B. elkanii, and higher in CPAC 7. Restriction fragment length polymorphism (RFLP)-PCR types of the 16S rDNA corresponded to the following: one type for B. elkanii species, two for B. japonicum, associated to CPAC 15 and CPAC 7, and unknown combinations of profiles. However, when nodC sequences and RFLP-PCR of the nifH region data were considered, only two clusters were observed having full congruence with B. japonicum and B. elkanii species. Combining the results, variability was such that even within a genetically more stable group (such as that of CPAC 15), only 6.4% of the isolates showed high similarity to the inoculant strain, whereas none was similar to CPAC 7. The genetic variability in our study seems to result from a variety and combination of events including strain dispersion, genomic recombination, and horizontal gene transfer. Furthermore, the genetic variability appears to be mainly associated with adaptation, saprophytic capacity, and competitiveness, and not with symbiotic effectiveness, as the similarity of symbiotic genes was higher than that of conserved regions of the DNA.  相似文献   

10.
Diversity was examined within a group of 79 isolates of Bradyrhizobium japonicum reactive to fluorescent antibodies (FAs) prepared against B. japonicum USDA 123. Analyses were by means of cross-adsorbed FAs, bacteriophage typing, and endonuclease restriction digest patterns. Serogroups 127 and 129 shared antigenic determinants with serogroup 123 but not with each other. Bacteriophage and DNA digest patterns reflected more common features between serogroups 123 and 127 than between 123 and 129. Serogroups 129 and 122 showed FA cross-reactivity. The term serocluster was proposed to reflect interrelationships observed among the serogroups.  相似文献   

11.
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early- and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels (104 to 105/g). The rhizosphere effects were minor in host plants during this period of nodule initiation and were about the same for all three serogroups. Although serogroup 123 gave no evidence of dominance in early host rhizospheres, it clearly dominated in nodule composition, occupying 60 to 100% of the nodules. High densities of all three serogroups were observed in host rhizospheres during flowering. Rhizosphere populations, especially of serogroup 123, were still high during pod fill and seed maturation. The rhizosphere responses of the R. japonicum serogroups were much greater with the soybean cultivars than with oats, but even in host rhizospheres the R. japonicum populations were greatly outnumbered by other bacteria. The success of serogroup 123 in achieving nodulation does not appear to be due to superior colonization of the host rhizosphere.  相似文献   

12.
The effects of temperature and soil type on interstrain competition of Bradyrhizobium japonicum and on nodulation and nitrogen accumulation in five soybean varieties belonging to four maturity groups were investigated at three sites devoid of soybean rhizobia along an elevational transect in Hawaii. Competition patterns of the three B. japonicum strains were unaffected by soil type or soil temperature. Strain USDA 110 was the best competitor, occupying on the average 81 and 64% of the nodules in the field and greenhouse experiments, respectively. Strain USDA 138 was the least successful in the field (4%), although it formed 34% of the nodules in the greenhouse. Nodule occupancy by B. japonicum strains was found to be related to soybean maturity group. Strain USDA 110 formed 61, 71, 88, 88, and 98% of the nodules in the field on Clay (00), Clark (IV), D68-0099 (VI), N77-4262 (VI), and Hardee (VIII), respectively. Strain USDA 136b formed few nodules on Hardee, an Rj2 soybean variety incompatible with that strain, in both experiments. Nodule number and weight at the 1,050-m site were reduced to 41 and 27%, respectively, of those at the 320-m site because of the decrease in temperature. Nodule number increased with increasing maturity group number at each site; however, there was not a corresponding increase in nodule weight. Nitrogen accumulation decreased from 246 mg of N per plant at the lowest elevation site to 26 mg of N per plant at the highest elevation. While soil type and temperature had no effect on strain competition, temperature had a profound influence on nodule parameters and plant growth.  相似文献   

13.
The internally transcribed spacer (ITS) sequences of several members within each of 17 soybean bradyrhizobial serogroups were determined to establish whether the regions within all members of each serogroup were identical. The rationale was to provide a sequence-based alternative to serology. The objective also was to link the extensive older literature on soybean symbiosis based on serology with ITS sequence data for more recent isolates from both soybean and other legumes nodulated by rhizobia within the genus Bradyrhizobium. With the exception of serogroup 31 and 110 strains, sequence identity was established within each serogroup. Variation ranged from 0 to 23 nucleotides among serogroup 31 strains, and the regions in the type strains USDA 31 (serogroup 31) and USDA 130 (serogroup 130) were identical. Sequence identity was established among most strains within serogroup 110. The exceptions were USDA 452 and USDA 456, which had ITS sequences that were identical with those of the serotype 124 strain, USDA 124. Perhaps this would imply that USDA 452, USDA 456, and serogroup 31 strains are members of rhizobial lineages resulting from genetic exchange and homologous recombination events. This conclusion would be supported by the construction of a phylogenetic network from the ITS sequence alignment implying that the genomes of extant members of the genus Bradyrhizobium are likely the products of reticulate evolutionary events. A pairwise homoplasy index (phi or Φw) test was used to obtain further evidence for recombination. The ITS sequences of USDA 110 and USDA 124 were more divergent (53 nucleotides) than this region between the type strain Bradyrhizobium japonicum USDA 6T and the proposed species Bradyrhizobium yuanmingense (28 nucleotides) and Bradyrhizobium liaoningense (48 nucleotides). Therefore, support for assigning discrete species boundaries among these three proposed species appears limited, considering the evidence for recombination, the narrow divergence of the ITS sequence, and their relative placement on the phylogenetic network.  相似文献   

14.
Interactions of soybean with Bradyrhizobium japonicum 123 (serogroup 123) and 138 (serogroup c1) were used to examine the relationship between early infection rates, competition for nodulation, and patterns of nodule occupancy. Both strains formed more infections in autoclaved soil (sterile soil) than in untreated soil (unsterile soil). Inoculation did not increase numbers of infection threads in unsterile soil-grown plants, where infection of proximal portions of primary roots was complete by 5 days after planting. Both strains infected and nodulated at similar rates in sterile soil. Nodules were always clustered on the upper root system, regardless of inoculation and soil treatment. Sixty-seven percent of the nodules of uninoculated plants grown in unsterile soil were occupied by rhizobia belonging to serogroups other than 123 or c1. Inoculation with strain 123 or 138 increased occupancy by that strain at the expense of residency by other rhizobia. Eighty-three percent of all nodules on plants dually inoculated with both strains in sterile soil contained strain 138. The corresponding value for plants inoculated in unsterile soil was 31%. Neither inoculum strain dominated occupancy of first-formed nodules in unsterile soil. It appears that north central Missouri soil may not have populations of highly competitive serogroup 123 and that early infection and nodulation rates do not contribute to the competitive success of strain 138.  相似文献   

15.
Of nine Bradyrhizobium japonicum serogroup 123 strains examined, 44% were found to be restricted for nodulation by cultivar Hill. Nodulation studies with soybean isoline BARC-2 confirmed that the soybean Rj4 allele restricts nodulation by the same serogroup 123 isolates. Immunological analyses indicated that B. japonicum strains in serogroups 123 and 31 share at least one surface somatic antigen.  相似文献   

16.
Soybean [Glycine max (L.) Merr.] forms a symbiosis with serogroups of Bradyrhizobium japonicum that differ in their dinitrogen fixing abilities. The objectives of this study were to identify soybean genotypes that would restrict nodulation by relatively inefficient serogroups indigenous to a large portion of the southeastern USA, and then characterize the nodulation responses of selected genotypes with specific bradyrhizobial strains under controlled conditions. From field screening trials followed by controlled single and competitive inoculations of serogroups USDA 31, 76 and 110, twelve soybean genotypes out of 382 tested were identified with varying levels of exclusion abilities. Soybean nodule occupancies and nodulation characteristics were influenced by plant genotype, environment (i.e. field or greenhouse), bradyrhizobial serogroup, and location of nodules (i.e. tap or lateral root). The cultivar Centennial sustains high seed yields even though it nodulates to a high degree with the inefficient serogroup USDA 31. In contrast, data from the released cultivars Braxton, Centennial and Coker 368 indicate that they may have been selected to exclude the inefficient serogroup USDA 76 from their tap root nodules, possibly contributing to high seed yield.  相似文献   

17.
We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain.  相似文献   

18.
Several isolates of Rhizobium fredii were examined for their serological relatedness to each other, to Bradyrhizobium japonicum, and to other fast- and slow-growing rhizobia. Immunofluorescence, agglutination, and immunodiffusion analyses indicated that R. fredii contains at least three separate somatic serogroups, USDA 192, USDA 194, and USDA 205. There was no cross-reaction between any of the R. fredii isolates and 13 of the 14 B. japonicum somatic serogroups tested. Cross-reactions were obtained with antisera from R. fredii and serogroup 122 of B. japonicum, Rhizobium meliloti, and several fast-growing Rhizobium spp. for Leucaena, Sesbania, and Lablab species. The serological relationship between R. fredii and R. meliloti was examined in more detail, and of 23 R. meliloti strains examined, 8 shared somatic antigens with the type strains from all three R. fredii serogroups. The serological relatedness of R. fredii to B. japonicum and R. meliloti appears to be unique since the strains are known to be biochemically and genetically diverse.  相似文献   

19.
A survey was conducted in 1980 on 972 isolates of Rhizobium japonicum obtained from 65 soybean field locations in 12 states. Isolates were examined for the hydrogenase (Hup) phenotype and somatic serogroup identity. Only 20% of the isolates were Hup+, with a majority of Hup isolates occurring in 10 of the 12 states. The most predominant serogroup was 31 (21.5%), followed by 123 (13.6%). Although most serogroups contained a majority of Hup isolates, marked differences occurred. None of the isolates in serogroup 135 were Hup+, but 93% of the isolates in serogroup 122 were Hup+. The serogroups with relatively high frequencies of Hup+ isolates (122 and 110) constitute only a small part (<5% each) of the R. japonicum field population in the 12 states.  相似文献   

20.
It was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznań University of Life Sciences Experiment Station in Gorzyń, Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号