首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu L  McKeehan WL  Wang F  Xie R 《Autophagy》2012,8(2):278-280
Microtubule-associated protein 1 small form (MAP1S; originally named C19ORF5) was identified as serving as linkers to connect mitochondria with microtubules for trafficking, and to bridge the autophagy machinery with microtubules and mitochondria to affect autophagosomal biogenesis and degradation. We found that MAP1S levels become elevated immediately in response to diethylnitrosamine-induced or genome instability-driven metabolic stress in a murine model of hepatocarcinoma. Elevation of MAP1S enhances autophagy to remove p62-associated aggresomes and dysfunctional organelles that trigger DNA double-strand (DSB) breaks and genome instability. The early accumulation of an unstable genome prior to signs of tumorigenesis suggested that genome instability causes tumorigenesis. After tumorigenesis, tumor development then triggers the activation of autophagy to reduce genome instability in tumor foci. We concluded that an increase in MAP1S levels triggers autophagy in order to suppress genome instability so that both the incidence of diethylnitrosamine-induced hepatocarcinogenesis and malignant progression are suppressed. Thus, a link between MAP1S-enhanced autophagy and suppression of genomic instability and tumorigenesis has been established.  相似文献   

2.

Background and Aim

Autophagy is a cellular process to regulate the turnover of misfolded/aggregated proteins or dysfunctional organelles such as damaged mitochondria. Microtubule-associated protein MAP1S (originally named C19ORF5) is a widely-distributed homologue of neuronal-specific MAP1A and MAP1B with which autophagy marker light chain 3 (LC3) was originally co-purified. MAP1S bridges autophagic components with microtubules and mitochondria through LC3 and positively regulates autophagy flux from autophagosomal biogenesis to degradation. The MAP1S-mediated autophagy suppresses tumorigenesis as suggested in a mouse liver cancer model and in prostate cancer patients. The TGFβ signaling pathway plays a central role in pancreatic tumorigenesis, and high levels of TGFβ suggest a tumor suppressive function and predict a better survival for some patients with resectable pancreatic ductal adenocarcinoma. In this study, we try to understand the relationship between TGFβ and MAP1S-mediated autophagy in pancreatic ductal adenocarcinoma.

Methods

We collected the tumor and its adjacent normal tissues from 33 randomly selected patients of pancreatic ductal adenocarcinomas to test the association between TGFβ and autophagy markers MAP1S and LC3. Then we tested the cause and effect relation between TGFβ and autophagy markers in cultured pancreatic cancer cell lines.

Results

Here we show that levels of TGFβ and autophagy markers MAP1S and LC3 are dramatically elevated in tumor tissues from patients with pancreatic ductal adenocarcinomas. TGFβ increases levels of MAP1S protein and enhances autophagy flux.

Conclusion

TGFβ may suppress the development of pancreatic ductal adenocarcinomas by enhancing MAP1S-mediated autophagy.  相似文献   

3.
He H  Dang Y  Dai F  Guo Z  Wu J  She X  Pei Y  Chen Y  Ling W  Wu C  Zhao S  Liu JO  Yu L 《The Journal of biological chemistry》2003,278(31):29278-29287
The molecular machinery required for autophagy is highly conserved in all eukaryotes as seen by the high degree of conservation of proteins involved in the formation of the autophagosome membranes. Recently, both yeast Apg8p and its rat homologue Map1lc3 were identified as essential constituents of autophagosome membrane as a processed form. In addition, both the yeast and human proteins exist in two modified forms produced by a series of post-translational modifications including a critical C-terminal cleavage after a conserved Gly residue, and the smaller processed form is associated with the autophagosome membranes. Herein, we report the identification and characterization of three human orthologs of the rat Map1LC3, named MAP1LC3A, MAP1LC3B, and MAP1LC3C. We show that the three isoforms of human MAP1LC3 exhibit distinct expression patterns in different human tissues. Importantly, we found that the three isoforms of MAP1LC3 differ in their post-translation modifications. Although MAP1LC3A and MAP1LC3C are produced by the proteolytic cleavage after the conserved C-terminal Gly residue, like their rat counterpart, MAP1LC3B does not undergo C-terminal cleavage and exists in a single modified form. The essential site for the distinct post-translation modification of MAP1LC3B is Lys-122 rather than the conserved Gly-120. Subcellular localization by cell fractionation and immunofluorescence revealed that three human isoforms are associated with membranes involved in the autophagic pathway. These results revealed different regulation of the three human isoforms of MAP1LC3 and implicate that the three isoforms may have different physiological functions.  相似文献   

4.
The MAP1LC3/LC3 family plays an essential role in autophagosomal biogenesis and transport. In this report, we show that the HECT family E3 ubiquitin ligase NEDD4 interacts with LC3 and is involved in autophagosomal biogenesis. NEDD4 binds to LC3 through a conserved WXXL LC3-binding motif in a region between the C2 and the WW2 domains. Knockdown of NEDD4 impaired starvation- or rapamycin-induced activation of autophagy and autophagosomal biogenesis and caused aggregates of the LC3 puncta colocalized with endoplasmic reticulum membrane markers. Electron microscopy observed gigantic deformed mitochondria in NEDD4 knockdown cells, suggesting that NEDD4 might function in mitophagy. Furthermore, SQSTM1 is ubiquitinated by NEDD4 while LC3 functions as an activator of NEDD4 ligase activity. Taken together, our studies define an important role of NEDD4 in regulation of autophagy.  相似文献   

5.
In fed cells, syntaxin 17 (Stx17) is associated with microtubules at the endoplasmic reticulum–mitochondria interface and promotes mitochondrial fission by determining the localization and function of the mitochondrial fission factor Drp1. Upon starvation, Stx17 dissociates from microtubules and Drp1, and binds to Atg14L, a subunit of the phosphatidylinositol 3‐kinase complex, to facilitate phosphatidylinositol 3‐phosphate production and thereby autophagosome formation, but the mechanism underlying this phenomenon remains unknown. Here we identify MAP1B‐LC1 (microtubule‐associated protein 1B‐light chain 1) as a critical regulator of Stx17 function. Depletion of MAP1B‐LC1 causes Stx17‐dependent autophagosome accumulation even under nutrient‐rich conditions, whereas its overexpression blocks starvation‐induced autophagosome formation. MAP1B‐LC1 links microtubules and Stx17 in fed cells, and starvation causes the dephosphorylation of MAP1B‐LC1 at Thr217, allowing Stx17 to dissociate from MAP1B‐LC1 and bind to Atg14L. Our results reveal the mechanism by which Stx17 changes its binding partners in response to nutrient status.  相似文献   

6.
Rat microtubule-associated protein light chain 3 (LC3) is a homologue of yeast Atg8, an essential component of autophagy. Following synthesis, the C-terminus of rat LC3 is cleaved by a cysteine protease-Atg4, to produce LC3-I, which is located in cytosolic fraction. LC3-I can be converted to LC3-II through the processing by Atg7 (E1-like enzyme) and Atg3 (E2-like enzyme). LC3-II is modified by phosphatidylethanolamine on C-terminus and binds tightly to autophagosomal membrane. Here we reported the cloning of two novel variants of rat LC3, named LC3A and LC3B, respectively, and LC3B is an alternative splicing variant of LC3. LC3A, LC3B, and LC3 showed different expression patterns in rat tissues, suggesting a functional divergence among these proteins. When LC3A and LC3B were overexpressed, both exhibited two forms (18 and 16 kDa, representing types of I and II, separately), which might be due to post-translational modification including the characteristic C-terminal cleavage at these two proteins as similar to that found in rat LC3 and yeast Atg8. Subcellular localization demonstrated that both LC3A and LC3B are colocalized with LC3 and associated with the autophagic membranes. Mutation analysis further revealed that the conserved Gly120 residues of LC3A and LC3B are essential for their characteristic C-terminal cleavage and localization to autophagic membranes. Present data suggested that LC3A and LC3B could also be used as two novel autophagosomal markers.  相似文献   

7.
AUT2 and AUT7, two novel genes essential for autophagocytosis in the yeast Saccharomyces cerevisiae were isolated. AUT7 was identified as a low copy suppressor of autophagic defects in aut2-1 cells. Aut7p is a homologue of the rat microtubule-associated protein (MAP) light chain 3 (LC3). Aut2p and Aut7p interact physically. Aut7p is attached to microtubules via Aut2p, which interacts with tubulins Tub1p and Tub2p. aut2- and aut7-deleted cells are unable to deliver autophagic vesicles and the precursor of aminopeptidase I to the vacuole. Double membrane-layered autophagosome-like vesicles accumulate in the cytoplasm of these cells. Our findings suggest that microtubules and an attached protein complex of Aut2p and Aut7p are involved in the delivery of autophagic vesicles to the vacuole.  相似文献   

8.
《Autophagy》2013,9(8):814-828
Microtubule-associated protein 1 (MAP1) light chain 3 (LC3) has proven useful as autophagosomal marker in studies on the interaction between pathogens and the host autophagic machinery. However, the function of LC3 is known to extend above and beyond its role in autophagosome formation. We previously reported that intrinsic LC3 is associated with the intracellular Chlamydia trachomatis inclusion in human epithelial cells. Here we show that LC3, most likely the cytoplasmic nonlipidated form, interacts with the C. trachomatis inclusion as a microtubule-associated protein rather than an autophagosome-associated component. In contrast, N-terminally GFP-tagged LC3 exclusively targets autophagosomes rather than chlamydial inclusions. Immunofluorescence analysis revealed an association of LC3 and MAP1 subunits A and B with the inclusion as early as 18 h post infection. Inclusion-bound LC3 was connected with the microtubular network. Depolymerization of the microtubular architecture disrupted the association of LC3/MAP1s with the inclusion. Furthermore, siRNA-mediated silencing of the MAP1 and LC3 proteins revealed their essential function in the intracellular growth of C. trachomatis. Interestingly, defective autophagy remarkably enhanced chlamydial growth, suggesting a suppressive effect of the autophagic machinery on bacterial development. However, depletion of LC3 in autophagy-deficient cells noticeably reduced chlamydial propagation. Thus, our findings demonstrate a new function for LC3, distinct from autophagy, in intracellular bacterial pathogenesis.  相似文献   

9.
Microtubule-associated protein 1 (MAP1) light chain 3 (LC3) has proven useful as autophagosomal marker in studies on the interaction between pathogens and the host autophagic machinery. However, the function of LC3 is known to extend above and beyond its role in autophagosome formation. We previously reported that intrinsic LC3 is associated with the intracellular Chlamydia trachomatis inclusion in human epithelial cells. Here we show that LC3, most likely the cytoplasmic nonlipidated form, interacts with the C. trachomatis inclusion as a microtubule-associated protein rather than an autophagosome-associated component. In contrast, N-terminally GFP-tagged LC3 exclusively targets autophagosomes rather than chlamydial inclusions. Immunofluorescence analysis revealed an association of LC3 and MAP1 subunits A and B with the inclusion as early as 18 h post infection. Inclusion-bound LC3 was connected with the microtubular network. Depolymerization of the microtubular architecture disrupted the association of LC3/MAP1s with the inclusion. Furthermore, siRNA-mediated silencing of the MAP1 and LC3 proteins revealed their essential function in the intracellular growth of C. trachomatis. Interestingly, defective autophagy remarkably enhanced chlamydial growth, suggesting a suppressive effect of the autophagic machinery on bacterial development. However, depletion of LC3 in autophagy-deficient cells noticeably reduced chlamydial propagation. Thus, our findings demonstrate a new function for LC3, distinct from autophagy, in intracellular bacterial pathogenesis.  相似文献   

10.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2-cyclinB1 complex). It has previously been demonstrated that the p34cdc2-cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215-cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

11.
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.  相似文献   

12.
13.
The GL15 glioblastoma cell line undergoes viability loss upon treatment with bromopyruvate. The biochemical mechanisms triggered by the antiglycolytic agent indicate the activation of an autophagic pathway. Acridine orange stains acidic intracellular vesicles already 60 min after bromopyruvate treatment, whereas autophagosomes engulfing electron dense material are well evidenced 18 h later. The autophagic process is accompanied by the expression of the early autophagosomal marker Atg5 and by LC3-II formation, a late biochemical marker associated with autophagosomes. In agreement with the autophagic route activation, the inhibitory and the activator Akt and ERK signaling pathways are depressed and enhanced, respectively. In spite of the energetic collapse suffered by bromopyruvate-treated cells, MALDI-TOF mass spectrometry lipid analysis does not evidence a decrease of the major phospholipids, in accordance with the need of phospholipids for autophagosomal membranes biogenesis. Contrarily, mitochondrial cardiolipin decreases, accompanied by monolyso-cardiolipin formation and complete cytochrome c degradation, events that could target mitochondria to autophagy. However, in our experimental conditions cytochrome c degradation seems to be independent of the autophagic process.  相似文献   

14.
Autophagy is the main eukaryotic degradation pathway for long-lived proteins, protein aggregates, and cytosolic organelles. Although the protein machinery involved in the biogenesis of autophagic vesicles is well described, very little is known about the mechanism of cytosolic transport of autophagosomes. In this study, we have identified an adaptor protein complex, formed by the two autophagic membrane-associated proteins LC3 and Rab7 and the novel FYVE and coiled-coil (CC) domain–containing protein FYCO1, that promotes microtubule (MT) plus end–directed transport of autophagic vesicles. We have characterized the LC3-, Rab7-, and phosphatidylinositol-3-phosphate–binding domains in FYCO1 and mapped part of the CC region essential for MT plus end–directed transport. We also propose a mechanism for selective autophagosomal membrane recruitment of FYCO1.  相似文献   

15.
Autophagy and the ubiquitin proteasome system are the two major cellular processes for protein and organelle recycling and clearance in eukaryotic cells. Evidence is accumulating that these two pathways are interrelated through adaptor proteins. Here, we found that PSMD1 and PSMD2, both components of the 19S regulatory particle of the proteasome, directly interact with Dictyostelium discoideum autophagy 16 (ATG16), a core autophagosomal protein. ATG16 is composed of an N-terminal domain, which is responsible for homo-dimerization and binding to ATG5 and a C-terminal β-propeller structure. Deletion analysis of ATG16 showed that the N-terminal half of ATG16 interacted directly only with PSMD1, while the C-terminal half interacted with both, PSMD1 and PSMD2. RFP-tagged PSMD1 as well as PSMD2 were enriched in large puncta, reminiscent of autophagosomes, in wild-type cells. These puncta were absent in atg16 ̄ and atg9 ̄/16 ̄ cells and weaker and less frequent in atg9 ̄ cells, showing that ATG16 was crucial and the autophagic process important for their formation. Co-expression of ATG16-GFP or GFP-ATG8a(LC3) with RFP-PSMD1 or RFP-PSMD2, respectively, in atg16 ̄ or wild-type cells revealed many instances of co-localization, suggesting that RFP-PSMD1 or RFP-PSMD2 positive puncta constitute autophagosomes. LysoTracker® labeling and a proteolytic cleavage assay confirmed that PSMD1 and PSMD2 were present in lysosomes in wild-type cells. In vivo, ATG16 is required for their enrichment in ATG8a positive puncta, which mature into autolysosomes. We propose that ATG16 links autophagy and the ubiquitin proteasome system.  相似文献   

16.
Cytoskeleton reorganization, leading to mitotic spindle formation, is an M-phase-specific event and is controlled by maturation promoting factor (MPF: p34cdc2–cyclinB1 complex). It has previously been demonstrated that the p34cdc2–cyclin B complex associates with mitotic spindle microtubules and that microtubule-associated proteins (MAPs), in particular MAP4, might be responsible for this interaction. In this study, we report that another ubiquitous MAP, TOG in human and its homologue in Xenopus XMAP215, associates also with p34cdc2 kinase and directs it to the microtubule cytoskeleton. Costaining of Xenopus cells with anti-TOGp and anti-cyclin B1 antibodies demonstrated colocalization in interphase cells and also with microtubules throughout the cell cycle. Cyclin B1, TOG/XMAP215, and p34cdc2 proteins were recovered in microtubule pellets isolated from Xenopus egg extracts and were eluted with the same ionic strength. Cosedimentation of cyclin B1 with in vitro polymerized microtubules was detected only in the presence of purified TOG protein. Using a recombinant C-terminal TOG fragment containing a Pro-rich region, we showed that this domain is sufficient to mediate cosedimentation of cyclin B1 with microtubules. Finally, we demonstrated interaction between TOG/XMAP215 and cyclin B1 by co-immunoprecipitation assays. As XMAP215 was shown to be the only identified assembly promoting MAP which increases the rapid turnover of microtubules, the TOG/XMAP215–cyclin B1 interaction may be important for regulation of microtubule dynamics at mitosis.  相似文献   

17.
Autophagy is a cellular surveillance pathway that balances metabolic and energy resources and transports specific cargos, including damaged mitochondria, other broken organelles, or pathogens for degradation to the lysosome. Central components of autophagosomal biogenesis are six members of the LC3 and GABARAP family of ubiquitin‐like proteins (mATG8s). We used phage display to isolate peptides that possess bona fide LIR (LC3‐interacting region) properties and are selective for individual mATG8 isoforms. Sensitivity of the developed sensors was optimized by multiplication, charge distribution, and fusion with a membrane recruitment (FYVE) or an oligomerization (PB1) domain. We demonstrate the use of the engineered peptides as intracellular sensors that recognize specifically GABARAP, GABL1, GABL2, and LC3C, as well as a bispecific sensor for LC3A and LC3B. By using an LC3C‐specific sensor, we were able to monitor recruitment of endogenous LC3C to Salmonella during xenophagy, as well as to mitochondria during mitophagy. The sensors are general tools to monitor the fate of mATG8s and will be valuable in decoding the biological functions of the individual LC3/GABARAPs.  相似文献   

18.
Autophagy is a versatile catabolic pathway for lysosomal degradation of cytoplasmic material. While the phenomenological and molecular characteristics of autophagic non-selective (bulk) decomposition have been investigated for decades, the focus of interest is increasingly shifting towards the selective mechanisms of autophagy. Both, selective as well as bulk autophagy critically depend on ubiquitin-like modifiers belonging to the Atg8 (autophagy-related 8) protein family. During evolution, Atg8 has diversified into eight different human genes. While all human homologues participate in the formation of autophagosomal membrane compartments, microtubule-associated protein light chain 3C (LC3C) additionally plays a unique role in selective autophagic clearance of intracellular pathogens (xenophagy), which relies on specific protein–protein recognition events mediated by conserved motifs. The sequence-specific 1H, 15N, and 13C resonance assignments presented here form the stepping stone to investigate the high-resolution structure and dynamics of LC3C and to delineate LC3C’s complex network of molecular interactions with the autophagic machinery by NMR spectroscopy.  相似文献   

19.
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.  相似文献   

20.
Microtubule-associated protein 1A (MAP1A) is a high-molecular-weight protein that is comprised of a heavy chain and a light chain (LC2) and is widely distributed along the microtubules in both mature neurons and glial cells. To illustrate the interaction among the MAP1A heavy chain, light chain, and microtubule, we prepared DNA constructs with Myc-, EGFP-, or DsRed-tags for full-length MAP1A DNA expressing whole MAP1A protein, two domains of MAP1A heavy chain, and light chain. Distribution patterns of various MAP1A domains as well as their interactions with microtubules were monitored in a non-neuronal COS7 and a neuronal Neuro2A cells. Our data revealed that a complete MAP1A protein, which contains both heavy chain and LC2, could be colocalized with microtubule networks not only in Neuro2A cells but also in transfected COS7 cells. Filamentous structures failed to be visualized along microtubules in COS7 cells transfected with MAP1A heavy chain or LC2 alone. Whereas, after introducing MAP1A heavy chain with LC2 into COS7 cells, both heavy chain and LC2 could be colocalized with microtubules. From our functional analysis, both MAP1A and its LC2 could protect microtubules against the challenge of nacodazol. Data collected from yeast two-hybrid assays of various MAP1A domains confirmed that the interaction of LC2 and NH2-terminal of MAP1A heavy chain is important for microtubule binding. From our analysis of MAP1A functional domains, we suggest that interactions between MAP1A heavy chain and LC2 are critical for the binding of microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号