首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sense of taste responds to a large variety of stimuli through specific transduction mechanisms. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the type 2 family of taste receptor genes and expressed at the surface of taste receptor cells. Recent advances in the identification and cloning of the complete repertoire of genes of this family in humans and rodents provide an opportunity to address unresolved questions in bitter taste. The functional characterization of some of the receptors that these genes encode suggests that it will be possible to understand more precisely their specific functions.  相似文献   

2.
Taste receptors play a crucial role in detecting the presence of bitter compounds such as alkaloids, and help to prevent the ingestion of toxic food. In Drosophila, we show for the first time that several taste sensilla on the prothoracic legs detect bitter compounds both through the activation of specific taste neurons but also through inhibition of taste neurons activated by sugars and water. Each sensillum usually houses a cluster of four taste neurons classified according to their best stimulus (S for sugar, W for Water, L1 and L2 for salts). Using a new statistical approach based on the analysis of interspike intervals, we show that bitter compounds activate the L2 cell. Bitter-activated L2 cells were excited with a latency of at least 50 ms. Their sensitivity to bitter compounds was different between sensilla, suggesting that specific receptors to bitter compounds are differentially expressed among L2 cells. When presented in mixtures, bitter compounds inhibited the responses of S and W, but not the L1 cell. The inhibition was effective even in sensilla where bitter compounds did not activate the L2 cell, indicating that bitter compounds directly interact with the S and W cells. Interestingly, this inhibition occurred with latencies similar to the excitation of bitter-activated L2 cells. It suggests that the inhibition in the W and S cells shares similar transduction pathways with the excitation in the L2 cells. Combined with molecular approaches, the results presented here should provide a physiological basis to understand how bitter compounds are detected and discriminated.  相似文献   

3.
We investigate how the molecular and cellular maps of the Drosophila olfactory system are integrated. A correspondence is established between individual odor receptors, neurons, and odors. We describe the expression of the Or22a and Or22b receptor genes, show localization to dendritic membranes, and find sexual dimorphism. Or22a maps to the ab3A neuron, which responds to ethyl butyrate. Analysis of a deletion mutant lacking Or22a, along with transgenic rescue experiments, confirms the mapping and demonstrates that an Or gene is required for olfactory function in vivo. Ectopic expression of Or47a in a mutant cell identifies the neuron from which it derives and its odor ligands. Ectopic expression in a wild-type cell shows that two receptors can function in a single cell. The ab3A neuron does not depend on normal odor receptor gene expression to navigate to its target in the CNS.  相似文献   

4.
5.
In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly.  相似文献   

6.
An important recent advance in the understanding of odor adaptation has come from the discovery that complex mechanisms of odor adaptation already take place at the earliest stage of the olfactory system, in the olfactory cilia. At least two rapid forms and one persistent form of odor adaptation coexist in vertebrate olfactory receptor neurons. These three different adaptation phenomena can be dissected on the basis of their different onset and recovery time courses and their pharmacological properties, indicating that they are controlled, at least in part, by separate molecular mechanisms. Evidence is provided for the involvement of distinct molecular steps in these forms of odor adaptation, including Ca(2+) entry through cyclic nucleotide-gated (CNG) channels, Ca(2+)-dependent CNG channel modulation, Ca(2+)/calmodulin kinase II-dependent attenuation of adenylyl cyclase, and the activity of the carbon monoxide/cyclic GMP second messenger system. Identification of these molecular steps may help to elucidate how the olfactory system extracts temporal and intensity information and to which extent odor perception is influenced by the different mechanisms underlying adaptation.  相似文献   

7.
The sweet and the bitter of mammalian taste   总被引:12,自引:0,他引:12  
The discovery of two families of mammalian taste receptors has provided important insights into taste recognition and taste perception. Recent studies have examined the receptors and signaling pathways that mediate sweet, bitter, and amino acid taste detection in mammals. These studies demonstrate that taste cells are selectively tuned to different taste modalities and clarify the logic of taste coding in the periphery.  相似文献   

8.
9.
The impact of calcium signalling on so many areas of cell biology reflects the crucial role of calcium signals in the control of diverse cellular functions. Despite the precision with which spatial and temporal details of calcium signals have been resolved, a fundamental aspect of the generation of calcium signals -- the activation of 'store-operated channels' (SOCs) -- remains a molecular and mechanistic mystery. Here we review new insights into the exchange of signals between the endoplasmic reticulum (ER) and plasma membrane that result in activation of calcium entry channels mediating crucial long-term calcium signals.  相似文献   

10.
11.
The cellular and molecular basis of peripheral nerve regeneration   总被引:48,自引:0,他引:48  
Functional recovery from peripheral nerve injury and repair depends on a multitude of factors, both intrinsic and extrinsic to neurons. Neuronal survival after axotomy is a prerequisite for regeneration and is facilitated by an array of trophic factors from multiple sources, including neurotrophins, neuropoietic cytokines, insulin-like growth factors (IGFs), and glial-cell-line-derived neurotrophic factors (GDNFs). Axotomized neurons must switch from a transmitting mode to a growth mode and express growth-associated proteins, such as GAP-43, tubulin, and actin, as well as an array of novel neuropeptides and cytokines, all of which have the potential to promote axonal regeneration. Axonal sprouts must reach the distal nerve stump at a time when its growth support is optimal. Schwann cells in the distal stump undergo proliferation and phenotypical changes to prepare the local environment to be favorable for axonal regeneration. Schwann cells play an indispensable role in promoting regeneration by increasing their synthesis of surface cell adhesion molecules (CAMs), such asN-CAM, Ng-CAM/L1, N-cadherin, and L2/HNK-1, by elaborating basement membrane that contains many extracellular matrix proteins, such as laminin, fibronectin, and tenascin, and by producing many neurotrophic factors and their receptors. However, the growth support provided by the distal nerve stump and the capacity of the axotomized neurons to regenerate axons may not be sustained indefinitely. Axonal regeneration may be facilitated by new strategies that enhance the growth potential of neurons and optimize the growth support of the distal nerve stump in combination with prompt nerve repair.  相似文献   

12.
The molecular basis of odor coding in the Drosophila antenna   总被引:6,自引:0,他引:6  
Hallem EA  Ho MG  Carlson JR 《Cell》2004,117(7):965-979
We have undertaken a functional analysis of the odorant receptor repertoire in the Drosophila antenna. Each receptor was expressed in a mutant olfactory receptor neuron (ORN) used as a "decoder," and the odor response spectrum conferred by the receptor was determined in vivo by electrophysiological recordings. The spectra of these receptors were then matched to those of defined ORNs to establish a receptor-to-neuron map. In addition to the odor response spectrum, the receptors dictate the signaling mode, i.e., excitation or inhibition, and the response dynamics of the neuron. An individual receptor can mediate both excitatory and inhibitory responses to different odorants in the same cell, suggesting a model of odorant receptor transduction. Receptors vary widely in their breadth of tuning, and odorants vary widely in the number of receptors they activate. Together, these properties provide a molecular basis for odor coding by the receptor repertoire of an olfactory organ.  相似文献   

13.
The molecular basis of odor coding in the Drosophila larva   总被引:2,自引:0,他引:2  
Kreher SA  Kwon JY  Carlson JR 《Neuron》2005,46(3):445-456
We have analyzed the molecular basis of odor coding in the Drosophila larva. A subset of Or genes is found to be expressed in larval olfactory receptor neurons (ORNs). Using an in vivo expression system and electrophysiology, we demonstrate that these genes encode functional odor receptors and determine their response spectra with 27 odors. The receptors vary in their breadth of tuning, exhibit both excitation and inhibition, and show different onset and termination kinetics. An individual receptor appears to transmit signals via a single ORN to a single glomerulus in the larval antennal lobe. We provide a spatial map of odor information in the larval brain and find that ORNs with related functional specificity map to related spatial positions. The results show how one family of receptors underlies odor coding in two markedly different olfactory systems; they also provide a molecular mechanism to explain longstanding observations of larval odor discrimination.  相似文献   

14.
《Current biology : CB》2022,32(14):3070-3081.e5
  1. Download : Download high-res image (141KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
The molecular basis for metameric pattern in the Drosophila embryo   总被引:90,自引:0,他引:90  
The metameric organization of the Drosophila embryo is generated in the first 5 h after fertilization. An initially rather simple pattern provides the foundation for subsequent development and diversification of the segmented part of the body. Many of the genes that control the formation of this pattern have been identified and at least twenty have been cloned. By combining the techniques of genetics, molecular biology and experimental embryology, it is becoming possible to unravel the role played by each of these genes. The repeating segment pattern is defined by the persistent expression of engrailed and of other genes of the 'segment polarity' class. The establishment of this pattern is directed by a transient molecular prepattern that is generated in the blastoderm by the activity of the 'pair-rule' genes. Maternal determinants at the poles of the egg coordinate this prepattern and define the anteroposterior sequence of pattern elements. The primary effect of these determinants is not known, but genes required for their production have been identified and the product of one of these, bicoid is known to be localized at the anterior of the egg. One early consequence of their activity is to define domains along the A-P axis within which a series of 'cardinal' genes are transcribed. The activity of the cardinal genes is required both to coordinate the process of segmentation and to define the early domains of homeotic gene expression. Further interactions between the homeotic genes and other classes of segmentation genes refine the initial establishment of segment identities.  相似文献   

17.
Receptors for bitter and sweet taste   总被引:10,自引:0,他引:10  
The identification of two families of receptors, T1Rs and T2Rs, for sweet and bitter taste stimuli has opened the door to understanding some of the basic mechanisms underlying taste transduction in mammals. Studies of the functions of these receptors and their patterns of expression provide important information regarding the detection of structurally diverse taste compounds and the manner in which different taste qualities are encoded in the mouth.  相似文献   

18.
In Drosophila, gustatory receptor neurons (GRNs) occur within hair‐like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l‐, s‐, and i‐type, according to their length and location. Of these, l‐ and s‐type labellar sensilla possess these four cells, but most i‐type sensilla house only two GRNs. In i‐type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10–50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i‐type sensilla appears to be performed by one GRN with the combined properties of S + L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter‐sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

19.
Bitter taste perception is important for vertebrates to select food and avoid toxic substances. A large number of Tas2r genes have been identified from vertebrate species previously; however, few studies have been conducted on the Tas2r genes of Ovalentaria species that have various dietary niches and are widely distributed, ranging from the sea to freshwater environments. Several genomes of Ovalentaria species have been released recently, allowing us to study Tas2r genes in these fishes. Thus, we explored the genomes of these fishes and identified 34 Tas2r genes in 21 species, including 27 intact Tas2r genes and seven pseudogenes. The results suggest that Ovalentaria species generally carry a small repertoire of Tas2r genes. To determine the phylogenetic relationship of Tas2r genes among 21 fishes, we constructed neighbor-joining (NJ) trees. The results showed that gene duplication may not occur in these fishes. Phylogenetic independent contrast (PIC) analysis showed that the fish Tas2r gene repertoire size was not positively correlated with diet, indicating that the food swallowing behavior might reduce the importance of bitter taste sense.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号