首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of neurotransmitter from nerve terminals occurs at a specialized region of the presynaptic plasma membrane called the active zone. A dense matrix of proteins associated with the active zone, called the presynaptic web, is thought to play a fundamental role in defining these neurotransmitter release sites. In this issue of Neuron, Phillips et al. have identified conditions for the biochemical purification of the presynaptic web and show that the web is comprised of proteins involved in the docking, fusion, and recycling of synaptic vesicles.  相似文献   

2.
Dobie F  Craig AM 《Cell》2007,130(5):775-777
The presynaptic scaffold molecule RIM1alpha is important for regulating neurotransmitter release. In this issue, Yao et al. (2007) show in mice that an E3 ubiquitin ligase, SCRAPPER, targets a set of presynaptic proteins including RIM1alpha for degradation by the ubiquitin-proteasome system. Their results identify protein degradation as a mechanism for holding rapid synaptic communication in check.  相似文献   

3.
Tyler CM  Boulanger LM 《Neuron》2012,74(4):597-599
In many parts of the developing vertebrate nervous system, axons are pruned to establish mature patterns of connectivity. In this issue of Neuron, Schafer et al. (2012) show that microglia may play a role in developmental axon pruning in the thalamus by engulfing presynaptic retinal ganglion cell terminals via a C3- and CR3-dependent mechanism.  相似文献   

4.
Alpha-RIMs (RIM1alpha and RIM2alpha) are multidomain active zone proteins of presynaptic terminals. Alpha-RIMs bind to Rab3 on synaptic vesicles and to Munc13 on the active zone via their N-terminal region, and interact with other synaptic proteins via their central and C-terminal regions. Although RIM1alpha has been well characterized, nothing is known about the function of RIM2alpha. We now show that RIM1alpha and RIM2alpha are expressed in overlapping but distinct patterns throughout the brain. To examine and compare their functions, we generated knockout mice lacking RIM2alpha, and crossed them with previously produced RIM1alpha knockout mice. We found that deletion of either RIM1alpha or RIM2alpha is not lethal, but ablation of both alpha-RIMs causes postnatal death. This lethality is not due to a loss of synapse structure or a developmental change, but to a defect in neurotransmitter release. Synapses without alpha-RIMs still contain active zones and release neurotransmitters, but are unable to mediate normal Ca(2+)-triggered release. Our data thus demonstrate that alpha-RIMs are not essential for synapse formation or synaptic exocytosis, but are required for normal Ca(2+)-triggering of exocytosis.  相似文献   

5.
Shepherd GM  Charpak S 《Neuron》2008,58(6):827-829
The cellular basis of brain imaging is emerging as a new frontier in current neuroscience. In this issue of Neuron, Petzold et al. analyze a model system, the olfactory glomerulus, to show how neurovascular coupling involves an elaborate dance between axon terminals, presynaptic and postsynaptic dendrites, glial cells, and the capillary network.  相似文献   

6.
The active zone protein RIM1alpha is required both for maintaining normal probability of neurotransmitter release and for long-term presynaptic potentiation at brain synapses. We now demonstrate that RIM1alpha(-/-) mice exhibit normal coordination and anxiety-related behaviors but display severely impaired learning and memory. Mice with a synaptotagmin 1 mutation, which selectively lowers release probability, and mice with Rab3A deletion, which selectively abolishes presynaptic long-term potentiation, do not exhibit this abnormality. Our data suggest that a decrease in release probability or a loss of presynaptic LTP alone is not sufficient to cause major behavioral alterations, but the combination of presynaptic abnormalities in RIM1alpha(-/-) mice severely alters learning and memory.  相似文献   

7.
alpha-RIMs and Munc13s are active zone proteins that control priming of synaptic vesicles to a readily releasable state, and interact with each other via their N-terminal sequences. The alpha-RIM N-terminal sequence also binds to Rab3s (small synaptic vesicle GTPases), an interaction that regulates presynaptic plasticity. We now demonstrate that alpha-RIMs contain adjacent but separate Munc13- and Rab3-binding sites, allowing formation of a tripartite Rab3/RIM/Munc13 complex. Munc13 binding is mediated by the alpha-RIM zinc-finger domain. Elucidation of the three-dimensional structure of this domain by NMR spectroscopy facilitated the design of a mutation that abolishes alpha-RIM/Munc13 binding. Selective disruption of this interaction in the calyx of Held synapse decreased the size of the readily releasable vesicle pool. Our data suggest that the ternary Rab3/RIM/Munc13 interaction approximates synaptic vesicles to the priming machinery, providing a substrate for presynaptic plasticity. The modular architecture of alpha-RIMs, with nested binding sites for Rab3 and other targets, may be a general feature of Rab effectors that share homology with the alpha-RIM N-terminal sequence.  相似文献   

8.
The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals.  相似文献   

9.
Kaeser PS  Deng L  Wang Y  Dulubova I  Liu X  Rizo J  Südhof TC 《Cell》2011,144(2):282-295
At a synapse, fast synchronous neurotransmitter release requires localization of Ca(2+) channels to presynaptic active zones. How Ca(2+) channels are recruited to active zones, however, remains unknown. Using unbiased yeast two-hybrid screens, we here identify a direct interaction of the central PDZ domain of the active-zone protein RIM with the C termini of presynaptic N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels. To test the physiological significance of this interaction, we generated conditional knockout mice lacking all multidomain RIM isoforms. Deletion of RIM proteins ablated most neurotransmitter release by simultaneously impairing the priming of synaptic vesicles and by decreasing the presynaptic localization of Ca(2+) channels. Strikingly, rescue of the decreased Ca(2+)-channel localization required the RIM PDZ domain, whereas rescue of vesicle priming required the RIM N terminus. We propose that RIMs tether N- and P/Q-type Ca(2+) channels to presynaptic active zones via a direct PDZ-domain-mediated interaction, thereby enabling fast, synchronous triggering of neurotransmitter release at a synapse.  相似文献   

10.
At presynaptic active zones, neurotransmitter release is initiated by the opening of voltage-gated Ca2+ channels close to docked vesicles. The mechanisms that enrich Ca2+ channels at active zones are, however, largely unknown, possibly because of the limited presynaptic accessibility of most synapses. Here, we have established a Cre-lox based conditional knockout approach at a presynaptically accessible central nervous system synapse, the calyx of Held, to directly study the functions of RIM proteins. Removal of all RIM1/2 isoforms strongly reduced the presynaptic Ca2+ channel density, revealing a role of RIM proteins in Ca2+ channel targeting. Removal of RIMs also reduced the readily releasable pool, paralleled by a similar reduction of the number of docked vesicles, and the Ca2+ channel-vesicle coupling was decreased. Thus, RIM proteins co-ordinately regulate key functions for fast transmitter release, enabling a high presynaptic Ca2+ channel density and vesicle docking at the active zone.  相似文献   

11.
Cheng Q  Augustine GJ 《Neuron》2008,57(2):171-172
The paper by Mochida et al. in this issue of Neuron proposes that synaptic facilitation, depression, and augmentation all arise from calcium-dependent regulation of calcium channels in the presynaptic terminal. Their proposal provides a unifying explanation for several forms of short-term presynaptic plasticity.  相似文献   

12.
Froemke RC  Li CY  Dan Y 《Neuron》2003,39(4):579-581
In this issue of Neuron, Sj?str?m et al. provide evidence for a novel presynaptic mechanism for coincidence detection in induction of timing-dependent LTD. In their scheme, simultaneous activation of presynaptic NMDA receptors and CB1 endocannabinoid receptors induces a long-lasting reduction in presynaptic transmitter release.  相似文献   

13.
Kerr AM  Jonas P 《Neuron》2008,57(1):5-7
Two studies in this issue of Neuron (Kwon and Castillo and Rebola et al.) show that the mossy fiber-CA3 pyramidal neuron synapse, a hippocampal synapse well known for its presynaptic plasticity, exhibits a novel form of long-term potentiation of NMDAR-mediated currents, which is induced and expressed postsynaptically.  相似文献   

14.
Transmitter release at synapses between nerve cells is spatially restricted to active zones, where synaptic vesicle docking, priming, and Ca2+-dependent fusion take place in a temporally highly coordinated manner. Munc13s are essential for priming synaptic vesicles to a fusion competent state, and their specific active zone localization contributes to the active zone restriction of transmitter release and the speed of excitation-secretion coupling. However, the molecular mechanism of the active zone recruitment of Munc13s is not known. We show here that the active zone recruitment of Munc13 isoforms Munc13-1 and ubMunc13-2 is regulated by their binding to the Rab3A-interacting molecule RIM1alpha, a key determinant of long term potentiation of synaptic transmission at mossy fiber synapses in the hippocampus. We identify a single point mutation in Munc13-1 and ubMunc13-2 (I121N) that, depending on the type of assay used, strongly perturbs or abolishes RIM1alpha binding in vitro and in cultured fibroblasts, and we demonstrate that RIM1alpha binding-deficient ubMunc13-2(I121) is not efficiently recruited to synapses. Moreover, the levels of Munc13-1 and ubMunc13-2 levels are decreased in RIM1alpha-deficient brain, and Munc13-1 is not properly enriched at active zones of mossy fiber terminals of the mouse hippocampus if RIM1alpha is absent. We conclude that one function of the Munc13/RIM1alpha interaction is the active zone recruitment of Munc13-1 and ubMunc13-2.  相似文献   

15.
Glutamate and GABA: a painful combination.   总被引:5,自引:0,他引:5  
A B MacDermott 《Neuron》2001,32(3):376-378
Regulation of release of inhibitory neurotransmitter is a key element of plasticity in dorsal horn function. In this issue of Neuron, Kerchner et al. report that neurotransmitter release from inhibitory dorsal horn neurons is affected by activation of presynaptic kainate-type glutamate receptors.  相似文献   

16.
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.  相似文献   

17.
Müller M  Davis GW 《Neuron》2010,68(3):324-326
In this issue of Neuron, Burgalossi et al. investigate synaptic vesicle priming by using presynaptic Ca(2+) uncaging at a small, glutamatergic, central synapse. Combining this technique with mouse genetics, the authors demonstrate that vesicle priming during ongoing neural activity can be limited by the recycling of recently used SNARE complexes.  相似文献   

18.
19.
Atasoy D  Kavalali ET 《Neuron》2006,50(3):345-346
Nascent synaptic networks have a high incidence of silent synapses. In this issue of Neuron, Shen et al. show that a brief burst of action potentials rapidly awaken silent synapses by increasing the availability of synaptic vesicles for fusion through BDNF-triggered presynaptic actin remodeling mediated by the small GTPase Cdc42.  相似文献   

20.
Jaskolski F  Martin S  Henley JM 《Neuron》2007,55(6):825-827
Endocytosis, exocytosis, and lateral diffusion are key mechanisms for AMPA receptor trafficking. Endocytosis of AMPARs and other postsynaptic proteins has been proposed to occur at specific endocytic zones (EZs), but the mechanisms that regulate this process are not at all clear. In this issue of Neuron, Lu et al. show that correct synaptic EZ positioning requires links between the GTPase dynamin-3 and the Homer/Shank complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号