首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-gated calcium channels mediate excitationcontraction coupling in the skeletal muscle. Their molecular composition, similar to neuronal channels, includes the pore-forming alpha(1) and auxiliary alpha(2)delta, beta, and gamma subunits. The gamma subunits are the least characterized, and their subunit interactions are unclear. The physiological importance of the neuronal gamma is emphasized by epileptic stargazer mice that lack gamma(2). In this study, we examined the molecular basis of interaction between skeletal gamma(1) and the calcium channel. Our data show that the alpha(1)1.1, beta(1a), and alpha(2)delta subunits are still associated in gamma(1) null mice. Reexpression of gamma(1) and gamma(2) showed that gamma(1), but not gamma(2), incorporates into gamma(1) null channels. By using chimeric constructs, we demonstrate that the first half of the gamma(1) subunit, including the first two transmembrane domains, is important for subunit interaction. Interestingly, this chimera also restores calcium conductance in gamma(1) null myotubes, indicating that the domain mediates both subunit interaction and current modulation. To determine the subunit of the channel that interacts with gamma(1), we examined the channel in muscular dysgenesis mice. Cosedimentation experiments showed that gamma(1) and alpha(2)delta are not associated. Moreover, alpha(1)1.1 and gamma(1) subunits form a complex in transiently transfected cells, indicating direct interaction between the gamma(1) and alpha(1)1.1 subunits. Our data demonstrate that the first half of gamma(1) subunit is required for association with the channel through alpha(1)1.1. Because subunit interactions are conserved, these studies have broad implications for gamma heterogeneity, function and subunit association with voltage-gated calcium channels.  相似文献   

2.
Blood pressure is regulated by a number of key molecules involving G-protein-coupled receptors, ion channels and monomeric small G-proteins. The relative contribution of these different signaling pathways to blood pressure regulation remains to be determined. Tamoxifen-induced, smooth muscle-specific inactivation of the L-type Cav1.2 Ca2+ channel gene in mice (SMAKO) reduced mean arterial blood pressure (MAP) in awake, freely moving animals from 120 +/- 4.5 to 87 +/- 8 mmHg. Phenylephrine (PE)- and angiotensin 2 (AT2)-induced MAP increases were blunted in SMAKO mice, whereas the Rho-kinase inhibitor Y-27632 reduced MAP to the same extent in control and SMAKO mice. Depolarization-induced contraction was abolished in tibialis arteries of SMAKO mice, and development of myogenic tone in response to intravascular pressure (Bayliss effect) was absent. Hind limb perfusion experiments suggested that 50% of the PE-induced resistance is due to calcium influx through the Cav1.2 channel. These results show that Cav1.2 calcium channels are key players in the hormonal regulation of blood pressure and development of myogenic tone.  相似文献   

3.
Complementary DNAs for the gamma subunit of the calcium channel of rabbit skeletal muscle were isolated on the basis of peptide sequences derived from the purified protein. The deduced primary structure is without homology to other known protein sequences and is consistent with the gamma subunit being an integral membrane protein.  相似文献   

4.
Using a non-denaturing digitonin-based polyacrylamide gradient gel electrophoretic system we identified the dihydropyridine-sensitive Ca2+ channel from skeletal muscle as a high molecular weight protein of greater than 700 kDa. When this protein was excised from the native gels and re-electrophoresed into SDS gels, it dissociated into the alpha 1, alpha 2, beta, gamma and delta peptides previously suggested to be putative subunits of these Ca2+ channels. The stoichiometry of the alpha 1:alpha 2:beta:gamma peptides was (-)1:1:1:1. The presence of the alpha 1 and alpha 2 peptides in the high molecular weight native complex was directly demonstrated with anti-alpha 1 and anti-alpha 2 antibodies. The apparent specific association of the peptides was demonstrated by the finding that the previously separated alpha 1 and alpha 2 peptides did not co-migrate with the native complex in non-denaturing gels. The results of this previously untried analysis support the concept that the skeletal muscle Ca2+ channels are multisubunit proteins. The combined non-denaturing and denaturing gel analyses may be of general utility for the analysis of other membrane proteins.  相似文献   

5.

Background

The neuroendocrine Cav1.3 L-type Ca channels have been recently found in the Human fetal heart and shown to play a vital role in Ca entry from the sarcolemma into the cell and in Ca homeostasis. Calreticulin, a Ca binding endoplasmic reticulum (ER) resident protein, has been recently shown to translocate to the cell surface where its role and function are just emerging. Here, we demonstrated a novel mechanism of Cav1.3 and calreticulin interaction resulting in downregulation of Cav1.3 channel densities in native Human fetal cardiac cells and Human Embryonic Kidney cell lines (tsA201).

Methods and results

Cell surface and cytoplasmic staining of calreticulin was demonstrated first in cultured human fetal cardiomyocytes (HFC), gestational age 18–24 weeks, using confocal microscopy thereby establishing that calreticulin is present at the cell surface in HFC. Co-immunoprecipitation from HFC using anti-Cav1.3 Ca channel antibody, and probing with anti-calreticulin antibody revealed a 46 kDa band corresponding to calreticulin suggesting that Cav1.3 Ca channel and calreticulin co-assemble in a macromolecular complex. Co-expression of Cav1.3 and calreticulin in tsA201 cells resulted in a decrease in surface expression of Cav1.3 Ca channels. These findings were consistent with the electrophysiological studies showing that co-transfection of Cav1.3 Ca channel and calreticulin resulted in 55% reduction of Cav1.3 Ca current densities recorded from tsA201 cells.

Conclusions

The results show the first evidence that calreticulin: (1) is localized outside the ER on the cell surface of HFC; (2) coimmunoprecipitates with Cav1.3 L-type Ca channel; (3) negatively regulates Cav1.3 surface expression thus resulting in decreased Cav1.3 Ca current densities. The data demonstrate a novel mechanism of modulation of Cav1.3 Ca channel by calreticulin, which may be involved in pathological settings such as autoimmune associated congenital heart block where Cav1.3 Ca channels are downregulated.  相似文献   

6.
The dihydropyridine-binding subunit alpha 1 of the calcium channel complex from rabbit skeletal muscle can be partially depleted from the alpha 2 delta beta-complex using wheat germ agglutinin-affinity chromatography. This depletion of the alpha 1 from the other subunits leads to a loss of dihydropyridine-binding, which can be fully reconstituted by repletion of the alpha 1 with the other subunits. Reassembly of these subunits results in an increase in the Kd and Bmax of the dihydropyridine-binding indicating that the non-dihydropyridine-binding subunits influence dihydropyridine-binding. The affinity of the alpha 1 subunit for the other subunits was determined to be approximately 35 nM. Since the free alpha 1 subunit will not bind to the beta subunit alone, there is evidence, given the selective partitioning of the beta subunit to the lectin-bound subunit pool, that either beta binds with higher affinity to the alpha 2 delta-complex than to the free alpha 1 subunit or that the bound alpha 1 creates or modulates beta-binding. This indicates a functional high affinity interaction between the dihydropyridine-binding alpha 1 subunit and the alpha 2 delta beta-complex.  相似文献   

7.
The densities of skeletal muscle intramembrane charge movement and macroscopic L-type Ca(2+) current have been shown to increase during prenatal development. In the present work, the electrophysiological characteristics of L-type Ca(2+) channels were analyzed over the embryonic period E14 to E19 using the whole-cell and cell-attached procedures. At the macroscopic level, the whole-cell L-type Ca(2+) conductance increased 100% between E14 and E19. This enhancement was accompanied by a small negative shift of the voltage dependence and a marked acceleration of the inactivation kinetics. At the single-channel level, the unitary conductance decreased significantly from 13.2 +/- 0.1 pS (n = 8) at E14 to 10.7 +/- 0.3 pS (n = 7) at E18 and the open probability was multiplied by 2. No significant change of the density of functional channels was observed during the same period. In contrast to the density of intramembrane charge movement, which, under the same conditions, has been shown to increase between 16 and 19 days, L-type Ca(2+) channels properties change mostly between 14 and 16 days. Taken together, these results suggest that the two functions of the dihydropyridine receptor are carried by two different proteins which could be differentially regulated by subunit composition and/or degree of phosphorylation.  相似文献   

8.
9.
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic reticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Cav1.2 subunit has been shown to bind both calcium-loaded (Ca2+CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction of apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca2+CaM can bind to the intact channel.  相似文献   

10.
11.
《Biophysical journal》2023,122(3):496-505
Cav1.1 is the voltage-gated calcium channel essential for the contraction of skeletal muscles upon membrane potential changes. Structural determination of the Cav1.1 channel opens the avenue toward understanding of the structure-function relationship of voltage-gated calcium channels. Here, we show that there exist two Ca2+-binding sites, termed S1 and S2, within the selectivity filter of Cav1.1 through extensive molecular dynamics simulations on various initial ion arrangement configurations. The formation of both binding sites is associated with the four Glu residues (Glu292/614/1014/1323) that constitute the so-called EEEE locus. At the S1 site near the extracellular side, the Ca2+ ion is coordinated with the negatively charged carboxylic groups of these Glu residues and of the Asp615 residue either in a direct way or via an intermediate water molecule. At the S2 site, Ca2+ binding shows two distinct states: an upper state involving two out of the four Glu residues in the EEEE locus and a lower state involving only one Glu residue. In addition, there exist two recruitment sites for Ca2+ above the entrance of the filter. These findings promote the understanding of mechanism for ion permeation and selectivity in calcium channels.  相似文献   

12.
Deglycosylation was used to assess the size of the core polypeptide of the large alpha 2-glycoprotein subunit of the 1,4-dihydropyridine-sensitive calcium channel from rabbit skeletal muscle. The extent of glycosylation was assessed by measuring the shift in apparent molecular mass of the alpha 2 component following electrophoresis in sodium dodecyl sulphate/polyacrylamide gels, using anti-(alpha 2-subunit) monoclonal antibody staining of immunoblots. Chemical deglycosylation with trifluoromethanesulphonic acid produced a shift in apparent molecular mass of the alpha 2 component from Mr 140,000 to Mr 105,000, consistent with a carbohydrate content of approximately 25%. Enzymatic treatments were insufficient to deglycosylate the alpha 2 subunit fully, possibly due to the inaccessibility of glycosidic bonds to enzyme attack. Enzymatic deglycosylation procedures did, however, reduce the 1,4-dihydropyridine-binding activity of transverse-tubule membranes. Neuraminidase alone or together with endo-beta-N-acetylglucosaminidase (endoglycosidase F) reduced the number of sites for (+)[3H]PN 200-110 by 73 +/- 2% and 77 +/- 5% respectively, with no change in apparent dissociation constant, implying a possible role for the glycosylated subunits in the binding of 1,4-dihydropyridines to the calcium-channel complex. The development of the alpha 2 component in rat skeletal muscle was shown to be indistinguishable from the appearance of 1,4-dihydropyridine binding activity consistent with the involvement of the alpha 2 subunit in the calcium-channel complex at all stages of development.  相似文献   

13.
Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II.  相似文献   

14.
In this work, we propose a molecular model of the L-type calcium channel pore from the human cardiac alpha1 subunit. Four glutamic acid residues, the EEEE locus, located at highly conserved P loops (also called SS1-SS2 segments) of the alpha1 subunit, molecularly express the calcium channel selectivity. The proposed alpha-helix structure for the SS1 segment, analyzed through molecular dynamics simulations in aqueous-phase, was validated by the plotting of Ramachandran diagrams for the averaged structures and by the analysis of i and i + 4 helical hydrogen bonding between the amino acid residues. The results of the simulation of the calcium channel model with one and two Ca2+ ions at the binding site are in accordance with mutation studies which suggest that the EEEE locus in the L-type calcium channel must form a single high-affinity binding site. These results suggest that the Ca2+ permeation through the channel would be derived from competition between two ions for the only high-affinity binding site. Furthermore, the experimentally observed blocking of the Na+ flux at micromolar Ca2+ concentrations, probably due to the occupancy of the single high-affinity binding site for one Ca2+, was also reproduced by our model.  相似文献   

15.
The skeletal muscle dihydropyridine receptor/Ca2+ channel is composed of five protein components (alpha 1, alpha 2 delta, beta, and gamma). Only two such components, alpha 1 and alpha 2, have been identified in heart. The present study reports the cloning and expression of a novel beta gene that is expressed in heart, lung, and brain. Coexpression of this beta with a cardiac alpha 1 in Xenopus oocytes causes the following changes in Ca2+ channel activity: it increases peak currents, accelerates activation kinetics, and shifts the current-voltage relationship toward more hyperpolarized potentials. It also increases dihydropyridine binding to alpha 1 in COS cells. These results indicate that the cardiac L-type Ca2+ channel has a similar subunit structure as in skeletal muscle, and provides evidence for the modulatory role of the beta subunit.  相似文献   

16.
The development of specific pharmacological agents that modulate different types of ion channels has prompted an extensive effort to elucidate the molecular structure of these important molecules. The calcium channel blockers that specifically modulate the L-type calcium channel activity have aided in the purification and reconstitution of this channel from skeletal muscle transverse tubules. The L-type calcium channel from skeletal muscle is composed of five subunits designated alpha 1, alpha 2, beta, gamma, and sigma. The alpha 1-subunit is the pore-forming polypeptide and contains the ligand binding and phosphorylation sites through which channel activity can be modulated. The role of the other subunits in channel function remains to be studied. The calcium channel components have also been partially purified from cardiac muscle. The channel consists of at least three subunits that have properties related to the subunits of the calcium channel from skeletal muscle. A core polypeptide that can form a channel and contains ligand binding and phosphorylation sites has been identified in cardiac preparations. Here we summarize recent biochemical and molecular studies describing the structural features of these important ion channels.  相似文献   

17.
We describe here the first three-dimensional structure of the cardiac L-type voltage-gated calcium channel (VGCC) purified from bovine heart. The structure was determined by electron microscopy and single particle analysis of negatively stained complexes, using the angular reconstitution method. The cardiac VGCC can be isolated as a stable dimer, as reported previously for the skeletal muscle VGCC, with a central aqueous chamber formed by the two halves of the complex. Moreover, we demonstrate that the dimeric cardiac VGCC binds the dihydropyridine [3H]azidopine with a Kd approximately 310 pM. We have compared the cardiac VGCC structure with the skeletal muscle form, determined using the same reconstructive methodology, allowing us to identify common and distinct features of the complexes. By using antibody and lectin-gold labeling, we have localized the intracellular beta polypeptides and the extracellular glycosylation sites of the skeletal muscle VGCC, which can be correlated to the cardiac three-dimensional structure. From the data presented here the assignment of the orientation of the VGCC complexes with respect to the lipid bilayer is now possible. A difference between the cardiac and skeletal muscle ion channels is apparent in the putative transmembrane region, which would be consistent with the absence of the gamma subunit in the cardiac VGCC assembly.  相似文献   

18.
Expression of L-type calcium channels in cardiac myocytes and vascular smooth muscle cells (VSMC) critically regulates the contractile state of these cells. In order to discover the elements in the promoter region of the Ca(v)1.2 gene encoding the vascular/cardiac calcium channel alpha(1C) subunit that are important for the basal gene expression, approximately 2 kb of the 5'-flanking sequence of the Ca(v)1.2 gene has been cloned in our lab. In this study, using various lengths of the 5'-flanking DNA fused with a luciferase gene as a reporter, we have defined a 493-bp fragment of the cis-regulatory DNA which carries the majority of promoter activity in pulmonary artery smooth muscle (PAC1) cells. DNase I footprinting analysis of this 493-bp DNA using nuclear extracts from PAC1 cells revealed a 27-bp DNA sequence that contains a c-Ets like motif (CAGGATGC). Mutation of the Ets-like site and the respective flanking sequence within the DNase I footprinting protection region induced a marked change in the promoter activity in PAC1 cells. Electrophoretic mobility shift assays (EMSA) confirmed the presence of specific binding factor(s) in PAC1 cells' nuclear extracts for this 27-bp DNA. Competition studies with the wild-type and mutated DNA fragments established the importance of the 27 bp DNA sequence for high-affinity binding of the nuclear proteins to the promoter. We conclude that there is a 27 bp region in the promoter of the Ca(v)1.2 gene to which nuclear proteins from VSMC bind and strongly regulate the basal promoter activity.  相似文献   

19.
R J Chang  H Smilowitz 《Life sciences》1988,43(13):1055-1061
Our newly isolated monoclonal antibody (#78) specifically interacts with the 170Kd 1,4 dihydropyridine binding component of the skeletal muscle calcium channel. Dihydropyridine receptor (DHPR) from rabbit skeletal muscle and canine cardiac membranes were purified by monoclonal antibody #78 affinity chromatography. We show that DHPR from canine cardiac membranes like DHPR from rabbit skeletal membranes contain a approximately 170Kd polypeptide to which antibody #78 immunoblots under both reducing and non-reducing conditions.  相似文献   

20.
We examined the binding of the 1,4-dihydropyridine (DHP) [3H]PN200-110 to membranes from a fibroblast cell line transfected with the alpha 1 subunit (DHP receptor) of the L-type Ca2+ channel from rabbit skeletal muscle. Binding site affinity (KD) and density (Bmax) were 1.16 +/- 0.31 nM and 142 +/- 17 fmoles/mg protein, respectively. This affinity corresponded closely with that observed in native skeletal muscle. The Ca2+ channel antagonists diltiazem and MDL 12,330A stimulated [3H]PN200-110 binding in a dose-dependent manner while flunarizine, quinacrine and trifluoperazine inhibited binding. Surprisingly, D600 also stimulated [3H]PN200-110 binding in a dose-dependent and stereoselective manner. It is concluded that the fibroblast cells used in this study provide a unique system for interactions of the Ca2+ channel ligands with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号