首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial reductive dechlorination of [1,2-14C]trichloroethene to [14C]cis-dichloroethene and [14C]vinyl chloride was observed at 4°C in anoxic microcosms prepared with cold temperature-adapted aquifer and river sediments from Alaska. Microbial anaerobic oxidation of [1,2-14C]cis-dichloroethene and [1,2-14C]vinyl chloride to 14CO2 also was observed under these conditions.  相似文献   

2.
Several previous studies have shown that renal failure decreases not only renal elimination but also metabolic clearance of drugs, particularly those metabolized by CYP3A. However, whether recovery of renal function results in recovery of hepatic CYP3A activity remains unknown. In this study, we evaluated the effect of renal function on CYP3A activity after kidney transplantation in patients with end-stage renal disease (ESRD) by measuring the change in CYP3A activity using plasma concentration of 4β-hydroxycholesterol as a biomarker. The study enrolled 13 patients with ESRD who underwent the first kidney allograft transplantation. Morning blood samples were collected before and 3, 7, 10, 14, 21, 30, 60, 90, 120, 150 and 180 days after kidney transplantation. Plasma concentration of 4β-hydroxycholesterol was measured using GC-MS. Compared with before kidney transplantation, creatinine clearance increased significantly from day 3 after kidney transplantation and stabilized thereafter. Plasma concentration of 4β-hydroxycholesterol was elevated significantly on days 90 and 180 after kidney transplantation. In conclusion, this study suggests the recovery of CYP3A activity with improvement in renal function after kidney transplantation in patients with ESRD.  相似文献   

3.
Our previous studies identified 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR) phosphates in human erythrocytes. We demonstrated formation of these nucleotides by phosphorylation of 4PYR and potential toxicity due to disruption of erythrocyte energy balance. This study aimed to evaluate the ability of the other cell types to phosphorylate 4PYR to characterize function and toxicity of these compounds. Homogenates of rat heart, kidneys, and liver were used to study the rate of 4PYR phosphorylation in the presence of ATP. In another experiment, 4PYR was administered into mouse as repeated subcutaneous injections and into rats as intraperitoneal infusion. After 7 days, heart, liver, kidney, lungs, and skeletal muscle were collected, and the concentration of 4PYR nucleotides was evaluated. HPLC was used to measure 4PYR and 4PYR nucleotides in homogenate and specimens from in vivo experiments. 4PYR was rapidly phosphorylated by the liver homogenate (390 ± 27 nmol/min/g wet wt). Significant rates were reported in the heart and kidneys' homogenates: 34.3 ± 4.3 nmol/min/g and 33.2 ± 9.2 nmol/min/g, respectively. Phosphorylation of 4PYR was almost completely inhibited by adenosine kinase inhibitor 5'-iodotubercidin. Administration of 4PYR in vivo resulted in accumulation of 4PYR monophosphate in the liver, heart, skeletal muscle, and lung (20-220 nmol/g dry wt) except kidney (<1 nmol/g). In contrast to erythrocytes, no 4PYR triphosphate formation (<1 nmol/g) was observed in any of the organs studied. We conclude that not only the erythrocytes but also other cell types are capable of phosphorylating 4PYR to form 4PYR monophosphate. Potential toxicity or physiological role of 4PYR in peripheral organs could be considered, but mechanisms will be different from that in erythrocytes.  相似文献   

4.
5.
6.
eIF4G is the scaffold subunit of the eIF4F complex, whose binding domains for eIF4E and poly(A)-binding protein (PABP) are thought to enhance formation of activated eIF4F•mRNA•PABP complexes competent to recruit 43S pre-initiation complexes. We found that the RNA-binding region (RNA1) in the N-terminal domain (NTD) of yeast eIF4G1 can functionally substitute for the PABP-binding segment to rescue the function of an eIF4G1-459 mutant impaired for eIF4E binding. Assaying RNA-dependent PABP–eIF4G association in cell extracts suggests that RNA1, the PABP-binding domain, and two conserved elements (Box1 and Box2) between these segments have overlapping functions in forming native eIF4G•mRNA•PABP complexes. In vitro experiments confirm the role of RNA1 in stabilizing eIF4G–mRNA association, and further indicate that RNA1 and Box1 promote PABP binding, in addition to RNA binding, by the eIF4G1 NTD. Our findings indicate that PABP–eIF4G association is only one of several interactions that stabilize eIF4F•mRNA complexes, and emphasize that closed-loop mRNP formation via PABP–eIF4G interaction is non-essential in vivo. Interestingly, two other RNA-binding regions in eIF4G1 have critical functions downstream of eIF4F•mRNA assembly.  相似文献   

7.
8.
Maize (Zea mays) cell cultures were used for the production of zearalenone-4-β-D-glucopyranoside as standard compound. Wheat samples were extracted with acetonitrile: water, applied to a florisil column and eluted with methanol:ethyl acetate. For determination and quantification of zearalenone-4-β-D-glucopyranoside and zearalenone a LC-MS method was developed. A concentration of 10 μg/kg zearalenone-4-β-D-glucopyranoside and zearalenone was detectable. The recovery rates were calculated to be 69% and 89% at a concentration level of 100 μg/kg for zearalenone-4-β-D-glucopyranoside and zearalenone, respectively.24 Bavarian wheat samples from harvest 1999 were analyzed. Zearalenone was present in 22 out of 24 field samples, the levels ranged from 11–860 μg/kg. Zearalenone-4-β-D-glucopyranoside was found in 10 out of the zearalenone positive samples (42%) at levels ranging from 17 to 104 μg/kg. The amounts of zearalenone-4-β-D-glucopyranoside were correlated to those of zearalenone (r2=0,86; b=0,10).  相似文献   

9.
10.
Cell suspension cultures of Glycine max, Phaseolus aureus, Cicer arietinum and Petroselinum hortense were shown to catabolize (α - 14C) - 4′,6-dihydroxyaurone as measured by 14CO2 production and isolation of (14C)-p-hydroxybenzoic acid. Aurone catabolism in plants is thus comparable with the degradation of chalcones flavanones and flavonols because in all cases the B-ring is liberated as a substituted benzoic acid.  相似文献   

11.
Stress is a risk factor for several cardiovascular pathologies. PPARα holds a fundamental role in control of lipid homeostasis by directly regulating genes involved in fatty acid transport and oxidation. Importantly, PPARα agonists are effective in raising HDL-cholesterol and lowering triglycerides, properties that reduce the risk for cardiovascular diseases. This study investigated the role of stress and adrenergic receptor (AR)-related pathways in PPARα and HNF4α regulation and signaling in mice following repeated restraint stress or treatment with AR-antagonists administered prior to stress to block AR-linked pathways. Repeated restraint stress up-regulated Pparα and its target genes in the liver, including Acox, Acot1, Acot4, Cyp4a10, Cyp4a14 and Lipin2, an effect that was highly correlated with Hnf4α. In vitro studies using primary hepatocyte cultures treated with epinephrine or AR-agonists confirmed that hepatic AR/cAMP/PKA/CREB- and JNK-linked pathways are involved in PPARα and HNF4α regulation. Notably, restraint stress, independent of PPARα, suppressed plasma triglyceride levels. This stress-induced effect could be attributed in part to hormone sensitive lipase activation in the white adipose tissue, which was not prevented by the increased levels of perilipin. Overall, this study identifies a mechanistic basis for the modification of lipid homeostasis following stress and potentially indicates novel roles for PPARα and HNF4α in stress-induced lipid metabolism.  相似文献   

12.
13.
R. T. Sayre  R. A. Kennedy 《Planta》1977,134(3):257-262
Four populations of Mollugo verticillata L. were compared on the basis of their photosynthetic products, photosynthetic rates, enhancement under low oxygen concentration, and CO2 compensation points. In addition, pulse-chase labeling experiments were conducted using one of the four populations. Depending on the plant population, C4 acids ranged from 40% to 11% of the primary products under short-term exposure to 14CO2. These compounds were also metabolized during pulse-chase experiments. All four populations had significantly different photosynthetic rates and those rates were correlated with the amounts of labelled C4 acids produced and C4-acid turnover. Three populations of M. verticillata had similar compensation points (40 l/l) and degrees of photosynthetic enhancement under low [O2] (20%), the fourth population was much lower in both characteristics (CO2 compensation, 25 l/l; low-O2 enhancement, 12%). The results verify the intermediate nature of photosynthesis in this species, and illustrate populational differences in its photosynthetic and photorespiratory carbon metabolism.Abbreviations PGA 3-phosphoglyceric acid - Kan Kansas - Mass Massachusetts - Mex Mexico  相似文献   

14.
15.
Summary A molecular fibrinogen variant has been detected by two-dimensional electrophoresis of human plasma samples. Fibrinogen is a complex molecule consisting of three different polypeptide chains A, B, and . The presently described variation resides in the -chain, which in the variant is slightly more basic and heavier than the common form of this chain. In a family material it has been shown that the variant is genetically determined, and the segregation pattern shows autosomal codominant inheritance. The family material has been typed in approximately 30 marker systems, and linkage studies have shown close linkage between the -chain locus (FGG) and MNSs. The MNSs loci are known to be located on chromosome 4 in humans and the fibrinogen -chain locus is thus on this chromosome. The MNSs/FGG distance is approximately 8 centimorgans. Supplementing data suggest that FGG is distal to MNSs on the long arm of chromosome 4.  相似文献   

16.

Aims/hypothesis

The excessive accumulation of adipose tissue in the obese state is linked to an altered secretion profile of adipocytes, chronic low-grade inflammation and metabolic complications. RBP4 has been implicated in these alterations, especially insulin resistance. The aim of the present study was to determine if a local inflammatory micro-environment in adipose tissue regulates RBP4 expression and secretion.

Methods

Human SGBS and primary adipocytes cultured with conditioned media from human THP-1 macrophages were used as an in vitro model for adipose inflammation. Adipocytes were exposed to recombinant TNF-α, IL-1β, IL-6 or IL-8. In addition, coexpression of IL-1β and RBP4 was measured in adipose tissue samples from 18 healthy females. RBP4 expression was studied by quantitative PCR and ELISA.

Results

RBP4 mRNA expression and secretion was significantly reduced upon incubation with macrophage-conditioned media in SGBS adipocytes and human primary adipocytes. Out of several factors studied we identified IL-1β as a new factor regulating RBP4. IL-1β significantly downregulated RBP4 mRNA and secretion in a time- and dose-dependent manner. IL-1β mediated its inhibitory effects on RBP4 expression via IL-1 receptor and NF-κB, as incubation with the IL-1 receptor blocking antibody and the NF-κB inhibitors CAPE and SC-514 reversed its effect. Most interestingly, RBP4 mRNA was negatively correlated with IL-1β mRNA in subcutaneous adipose tissue.

Conclusions

Adipose tissue inflammation as found in the obese state might lead to a downregulation in local RBP4 levels. IL-1β was identified as a major factor contributing to the decrease in RBP4. The increase in circulating RBP4 that often precedes the development of systemic insulin resistance is most likely unrelated to inflammatory processes in adipose tissue.  相似文献   

17.
Currently, more than 200?primary immunodeficiency diseases have been discovered. In most cases, genetic defects affect the expression or the function of proteins involved in immune development and homeostasis. Some orphan immuno-hematological disorders are characterized by an abnormal leukocyte trafficking, a notion predictive of an anomaly of the chemokine/chemokine receptor system. In this review, we focus on recent advances in the characterization of dysfunctions of the CXCL12 (SDF-1)/CXCR4 signaling axis in two rare human immunodeficiencies, one associated with a loss of CXCR4 function, the Idiopathic CD4(+) T-cell Lymphocytopenia, and the other with a gain of CXCR4 function, the WHIM syndrome.  相似文献   

18.
Integrin heterodimers play diverse and important roles in physiological and pathological processes, such as cell adhesion, migration, proliferation, differentiation, angiogenesis, and tumor progression, via the outside-in and/or inside-out signaling pathways. Aberrant functions of integrins have been implicated in the causation and intervention of multiple diseases. Integrin β(4), a laminin-5 (LN5) receptor, mainly locates in the adhesion structure of hemidesmosome (HD). Most of the previous researches concentrated on the role of integrin β(4) in cancer and cancer therapy, and a few focused on the physiological roles of normal mammalian cells. Recently, accumulating data reveal that integrin β(4) participates in cell death, macroautophagy (hereafter autophagy), senescence, and differentiation regulations in various cell types including human umbilical vein endothelial cells (HUVECs), mesenchymal stem cells, and mouse neural cells, implying the key roles of integrin β(4) in the physiological alteration of mammalian cells. Thus, the elucidation of integrin β(4)-mediated signaling may undoubtedly contribute to novel therapeutic strategies for various human diseases, such as vascular and neural disorders. We have reviewed the roles of integrin β(4) in neural cells. In the present review we will discuss the recent research progress in the inherent functions and pharmacological modulation of integrin β(4) in vascular endothelial cells.  相似文献   

19.
Using an immunoblotting technique and goat antihuman C4, we observed five distinct electrophoretic variants of C4 in a panel of 60 random dogs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of immunoprecipitated C4 showed that dog C4 is composed of three polypeptide subunit chains (, , and ) and that structural variability occurs within the - and -chain regions. Two distinct molecular weight forms of both the C4- ( A and B) and C4-( A and B) chain were detected. The variant forms of C4 and C4 were found in association with particular C4 allotypes.  相似文献   

20.
ABSTRACT

KHC-4 is a 2-phenyl-4-quinolone analogue that exhibits anticancer activity. Aberrant activation of β-catenin signaling contributes to prostate cancer development and progression. Therefore, targeting β-catenin expression could be a useful approach to treating prostate cancer. We found that KHC-4 can inhibit β-catenin expression and its signaling pathway in DU145 prostate cancer cells. Treatment with KHC-4 decreased total β-catenin expression and concomitantly decreased β-catenin levels in both the cytoplasm and nucleus of cells. KHC-4 treatment also inhibited β-catenin expression and that of its target proteins, PI3K, AKT, GSK3β and TBX3. We monitored the stability of β-catenin with the proteasomal inhibitor, MG132, in DU145 cells and found that MG132 reversed KHC-4-induced proteasomal β-catenin degradation. We verified CDK1/β-catenin expression in KHC-4 treated DU145 cells. We found that roscovitine treatment reversed cell proliferation by arresting the cell cycle at the G2/M phase and β-catenin expression caused by KHC-4 treatment. We suggest that KHC-4 inhibits β-catenin signaling in DU145 prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号