首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modification of proteins with small molecules is a widely used and powerful tool in biological research. Enzymatic approaches are particularly promising because substrate specificity allows for site-specific modification. Sortase A, a transpeptidase from Staphylococcus aureus, cleaves between the T and G residues in the sequence LPXTG, and subsequently links the carboxyl group of the T residue to an amino group of N-terminal glycine oligomers by a native peptide bond. Although Gram-positive bacteria have several kinds of sortases, there are few reports concerning their expression and substrate specificity. Here, we demonstrate site-specific protein modification with primary amine-containing molecules catalyzed by Lactobacillus plantarum sortase. Enhanced green fluorescent protein (EGFP) was employed as a model protein, and an amine-containing biotin molecule was site-specifically conjugated with LPQTSEQ-tagged EGFP. We developed a novel Lactobacillus plantarum sortase that has different substrate specificity compared to Staphylococcus aureus sortase. Amine-directed protein modification was achieved using the Lactobacillus plantarum sortase 'LPQTSEQ' sequence original recognition tag. Our results demonstrate a promising method for expanding the capabilities of site-specific protein-small molecule modification.  相似文献   

2.
The avidin-biotin technology has many applications, including molecular detection; immobilization; protein purification; construction of supramolecular assemblies and artificial metalloenzymes. Here we present the recombinant expression of novel biotin-binding proteins from bacteria and the purification and characterization of a secreted burkavidin from the human pathogen Burkholderia pseudomallei. Expression of the native burkavidin in Escherichia coli led to periplasmic secretion and formation of a biotin-binding, thermostable, tetrameric protein containing an intra-monomeric disulphide bond. Burkavidin showed one main species as measured by isoelectric focusing, with lower isoelectric point (pI) than streptavidin. To exemplify the potential use of burkavidin in biotechnology, an artificial metalloenzyme was generated using this novel protein-scaffold and shown to exhibit enantioselectivity in a rhodium-catalysed hydrogenation reaction.  相似文献   

3.
A gene encoding an avidin-like protein was discovered in the genome of B. japonicum. The gene was cloned to an expression vector and a protein, named bradavidin II, was produced in E. coli. Bradavidin II has an identity of 20-30% and a similarity of 30-40% with previously discovered bradavidin and other avidin-like proteins. It has biochemical characteristics close to those of avidin and streptavidin and binds biotin tightly. In contrast to other tetrameric avidin-like proteins studied to date, bradavidin II has no tryptophan analogous to the W110 in avidin (W120 in streptavidin), thought to be one of the most essential residues for tight biotin-binding. Homology modeling suggests that a proline residue may function analogously to tryptophan in this particular position. Structural elements of bradavidin II such as an interface residue pattern or biotin contact residues could be used as such or transferred to engineered avidin forms to improve or create new tools for biotechnological applications.  相似文献   

4.
Expression vectors for streptavidin-containing chimeric proteins   总被引:8,自引:0,他引:8  
We have constructed expression vectors for streptavidin-containing chimeric proteins. These vectors carry the DNA sequence corresponding to the core region of the streptavidin molecule, and have several unique cloning sites which facilitate construction of gene fusions of streptavidin with a target protein. A chimeric protein of streptavidin and the target protein should be expressible in Escherichia coli by using the T7 expression system. Because of the strong and specific biotin-binding affinity of the streptavidin moiety, such streptavidin-containing chimeric proteins should extensively expand the applications of the streptavidin-biotin system, and offer a variety of applications as new biological tools.  相似文献   

5.
Tanaka T  Kamiya N  Nagamune T 《FEBS letters》2005,579(10):2092-2096
Here, we report the N-terminal glycine (Gly) residue of a target protein can be a candidate primary amine for site-specific protein conjugation catalyzed by microbial transglutaminase (MTG) from Streptomyces mobaraensis. Gly5-enhanced green fluorescent protein (EGFP) (EGFP with five additional Gly residues at its N-terminus) was cross-linked with Myc-dihydrofolate reductase (DHFR) (DHFR with the myc epitope sequence at its N-terminus) to yield DHFR-EGFP heterodimers. The reactivities of additional peptidyl linkers were investigated and the results obtained suggested that at least three additional Gly residues at the N-terminus were required to yield the EGFP-DHFR heterodimeric form. Site-directed mutagenesis analysis revealed marked preference of MTG for amino acids adjacent to the N-terminal Gly residue involved in the protein conjugation. In addition, peptide-protein conjugation was demonstrated by MTG-catalyzed N-terminal Gly-specific modification of a target protein with the myc epitope peptide.  相似文献   

6.
The monitoring and management of blood glucose levels are key components for maintaining the health of people with diabetes. Traditionally, glucose monitoring has been based on indirect detection using electrochemistry and enzymes such as glucose oxidase or glucose dehydrogenase. Here, we demonstrate direct detection of glucose using a surface plasmon resonance (SPR) biosensor. By site-specifically and covalently attaching a known receptor for glucose, the glucose/galactose-binding protein (GGBP), to the SPR surface, we were able to detect glucose binding and determine equilibrium binding constants. The site-specific coupling was accomplished by mutation of single amino acids on GGBP to cysteine and subsequent thiol conjugation. The resulting SPR surfaces had glucose-specific binding properties consistent with known properties of GGBP. Further modifications were introduced to weaken GGBP-binding affinity to more closely match physiologically relevant glucose concentrations (1-30 mM). One protein with a response close to this glucose range was identified, the GGBP triple mutant E149C, A213S, L238S with an equilibrium dissociation constant of 0.5mM. These results suggest that biosensors for direct glucose detection based on SPR or similar refractive detection methods, if miniaturized, have the potential for development as continuous glucose monitoring devices.  相似文献   

7.
Recombinant streptavidin is extremely difficult to express at high levels in the cytoplasm of Escherichia coli without the formation of inclusion bodies. Fusing a solubility enhancing partner to an aggregation prone protein is a widely used tool to circumvent inclusion body formation. Here, we use streptavidin as a target protein to test the properties of N-terminal fragments of translation initiation factor IF2 from E. coli as a solubility partner. Domain I (residue 1-158) of IF2 is superior to the well-established solubility partners maltose-binding protein (MBP) and NusA for soluble expression of active streptavidin. The number of active streptavidin molecules isolated by chromatography is increased threefold when domain I is used as solubility partner as compared to MBP or NusA. The relatively small size, high expressivity, and extreme solubility make domain I of IF2 an ideal partner for streptavidin and may also prevent other recombinant proteins such as ScFv antibodies from being expressed as insoluble aggregates in the cytoplasm of E. coli.  相似文献   

8.
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.  相似文献   

9.
A boron-enriched streptavidin has been prepared by chemical conjugation of a boron-rich compound, B(12)H(11)SH(2)(-) (BSH), to a genetically engineered streptavidin variant. The streptavidin variant used has 20 cysteine residues per molecule, derived from a C-terminal cysteine stretch consisting of five cysteine residues per subunit. Because natural streptavidin has no cysteine residues, the reactive sulfhydryl groups of the cysteine stretch serve as unique conjugation sites for sulfhydryl chemistry. BSH was conjugated irreversibly to the sulfhydryl groups of the streptavidin variant via a sulfhydryl-specific homobifunctional chemical cross-linker. Quantitative boron analysis indicates that the resulting streptavidin-BSH conjugate carries approximately 230 boron atoms/molecule. This indicates that the chemical conjugation of BSH to the streptavidin variant was highly specific and efficient because this method should allow the conjugation of a maximum of 240 boron atoms/streptavidin molecule. This boron-enriched streptavidin retained both full biotin-binding ability and tetrameric structure, suggesting that the conjugation of BSH has little, if any, effect on the fundamental properties of streptavidin. This boron-enriched streptavidin should be very useful as a component of targetable boron carriers for neutron capture therapy of cancer. For example, a monoclonal antibody against a tumor-associated antigen can be attached tightly to the boron-enriched streptavidin upon simple biotinylation, and the resulting conjugate could be used to target boron to tumor cells on which the tumor-associated antigen is overexpressed.  相似文献   

10.
The high affinity binding interaction of biotin to avidin or streptavidin has been used widely in biochemistry and molecular biology, often in sensitive protein detection or protein capture applications. However, in vitro chemical techniques for protein biotinylation are not always successful, with some common problems being a lack of reaction specificity, inactivation of amino acid residues critical for protein function and low levels of biotin incorporation. This report describes an improved expression system for the highly specific and quantitative in vivo biotinylation of fusion proteins. A short 'biotinylation peptide', described previously by Schatz, is linked to the N-terminus of Escherichia coli thioredoxin (TrxA) to form a new protein, called BIOTRX. The 'biotinylation peptide' serves as an in vivo substrate mimic for E. coli biotin holoenzyme synthetase (BirA), an enzyme which usually performs highly selective biotinylation of E.coli biotin carboxyl carrier protein (BCCP). A plasmid expression vector carrying the BIOTRX and birA genes arranged as a bacterial operon can be used to obtain high level production of soluble BIOTRX and BirA proteins and, under appropriate culture conditions, BIOTRX protein produced by this system is completely biotinylated. Fusions of BIOTRX to other proteins or peptides, whether these polypeptides are linked to the C-terminus or inserted into the BIOTRX active site loop, are also quantitatively biotinylated. Both types of BIOTRX fusion can be captured efficiently on avidin/streptavidin media for purification purposes or to facilitate interaction assays. We illustrate the utility of the system by measurements of antibody and soluble receptor protein binding to BIOTRX fusions immobilized on streptavidin-conjugated BIAcore chips.  相似文献   

11.
Proteins with N-terminal cysteine can undergo native chemical ligation and are useful for site-specific N-terminal labeling or protein semisynthesis. Recombinant production of these has usually been by site-specific cleavage of a precursor fusion protein at an internal cysteine residue. Here we describe a simpler route to producing these proteins. Overexpression in E. coli of several proteins containing cysteine as the second amino acid residue yielded products in which the initiating methionine residue had been completely cleaved by endogenous methionine aminopeptidase. While secondary modification of the terminal cysteine was a complicating factor, conditions were identified to eliminate or minimize this problem. Recombinant proteins produced in this way were suitable for site-specific modification of the amino terminus via native chemical ligation technology, as demonstrated by conjugation of a thioester-containing derivative of fluorescein to one such protein. The ability to directly produce proteins with N-terminal cysteine should simplify the application of native chemical ligation technology to recombinant proteins and make the technique more amenable to researchers with limited expertise in protein chemistry.  相似文献   

12.
We recently described a conceptually novel method for the purification of recombinant proteins with a propensity to form inclusion bodies in the cytoplasm of Escherichia coli. Recombinant proteins were covalently coupled to the E. coli ribosome by fusing them to ribosomal protein 23 (rpL23) followed by expression in an rpL23 deficient strain of E. coli. This allowed for the isolation of ribsomes with covalently coupled target proteins which could be efficiently purified by centrifugation after in vitro proteolysis at a specific site incorporated between rpL23 and the target protein. rpL23-GFP-His is among the fusion proteins used in our previous study for ribosomal coupling of C-terminally His-tagged green fluorescent protein. To assess the efficiency of separation of target protein from ribosomes, by site-specific proteolysis, we required monoclonal antibodies directed against rpL23 and GFP. We therefore purified rpL23-GFP-His, rpL23-His and GFP from E. coli recombinants using affinity, ion exchange and hydrophobic interaction chromatography. These proteins could be purified with yields of 150, 150 and 1500 microg per gram cellular wet weight, respectively. However, rpL23-GFP-His could only be expressed in a soluble form and subsequently purified, when cells were cultivated at reduced temperatures. The purified rpL23-GFP-His fusion protein was used to immunize balb/c mice and the hybridoma cell lines resulting from in vitro cell fusion were screened by ELISA using rpL23-His and GFP to select for monoclonal antibodies specific for each protein. This resulted in 20 antibodies directed against rpL23 and 3 antibodies directed against GFP. Antibodies were screened for isotypes and their efficiency in western immunoblots. The most efficient antibody against rpL23 and GFP were purified by Protein G Sepharose affinity chromatography. The purified antibodies were used to evaluate the separation of ribosomes from GFP, streptavidin, murine interleukin-6, a phagedisplay antibody and yeast elongation factor 1A by centrifugation, when ribosomes with covalently coupled target protein were cleaved at specific proteolytic cleavage sites. We conclude that the generated antibodies can be used to evaluate ribosomal coupling of recombinant target proteins as well as the efficiency of their separation from the ribosome.  相似文献   

13.
Aucher W  Davison S  Fouet A 《PloS one》2011,6(11):e27411
LPXTG proteins, present in most if not all Gram-positive bacteria, are known to be anchored by sortases to the bacterial peptidoglycan. More than one sortase gene is often encoded in a bacterial species, and each sortase is supposed to specifically anchor given LPXTG proteins, depending of the sequence of the C-terminal cell wall sorting signal (cwss), bearing an LPXTG motif or another recognition sequence. B. anthracis possesses three sortase genes. B. anthracis sortase deleted mutant strains are not affected in their virulence. To determine the sortase repertoires, we developed a genetic screen using the property of the gamma phage to lyse bacteria only when its receptor, GamR, an LPXTG protein, is exposed at the surface. We identified 10 proteins that contain a cell wall sorting signal and are covalently anchored to the peptidoglycan. Some chimeric proteins yielded phage lysis in all sortase mutant strains, suggesting that cwss proteins remained surface accessible in absence of their anchoring sortase, probably as a consequence of membrane localization of yet uncleaved precursor proteins. For definite assignment of the sortase repertoires, we consequently relied on a complementary test, using a biochemical approach, namely immunoblot experiments. The sortase anchoring nine of these proteins has thus been determined. The absence of virulence defect of the sortase mutants could be a consequence of the membrane localization of the cwss proteins.  相似文献   

14.
The Staphylococcus aureus sortase transpeptidase SrtA isoform is responsible for the covalent attachment of virulence and colonization-associated proteins to the bacterial peptidoglycan. SrtA utilizes two substrates, undecaprenol-pyrophosphoryl-MurNAc(GlcNAc)-Ala-D-isoGlu-Lys(epsilon-Gly(5))-D-Ala-D-Ala (branched Lipid II) and secreted proteins containing a highly conserved C-terminal LPXTG sequence. SrtA simultaneously cleaves the Thr-Gly bond of the LPXTG-containing protein and forms a new amide bond with the nucleophilic amino group of the Gly(5) portion of branched Lipid II, anchoring the protein to this key intermediate that is subsequently polymerized into peptidoglycan. Here we describe the development of a general in vitro method for elucidating the substrate specificity of sortase enzymes. In addition, using immunofluorescence, cell adhesion assays, and transmission electron microscopy, we establish links between in vitro substrate specificity and in vivo function of the S. aureus sortase isoforms. Results from these studies provide strong supporting evidence of a primary role of the SrtA isoform in S. aureus adhesion and host colonization, illustrate a lack of specificity cross talk between SrtA and SrtB isoforms, and highlight the potential of SrtA as a target for the development of antivirulence chemotherapeutics against Gram-positive bacterial pathogens.  相似文献   

15.
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing  a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.  相似文献   

16.
Structural study of multidomain proteins using NMR is an emerging issue for understanding biological functions. To this end, domain-specific labeling is expected to be a key technology for facilitating the NMR-assignment process and for collecting distance information via spin labeling. To obtain domain-specific labeled samples, use of sortase A as a protein ligation tool is a viable approach. Sortase A enables ligation of separately expressed proteins (domains) through the Leu-Pro-X-Thr-Gly linker. However, the ligation reaction mediated by sortase A is not efficient. Poor yield and long reaction times hamper large-scale preparation using sortase A. Here we report the application of highly active sortases to NMR analyses. Optimal yields can be achieved within several hours when the ligation reaction are mediated by highly active sortases at 4 °C. We propose that this protocol can contribute to structural analyses of multidomain proteins by NMR.  相似文献   

17.
The large number of uncharacterized genes emerging from genome sequencing projects has resulted in a need for quick and reliable screening methods for protein expression parameters. We have utilized the univector plasmid recombination system (as previously reported) to develop a series of vectors for rapid screening for expression in Escherichia coli. A high level of recombinant protein expression is a requirement for purification of protein for structural determination and other purposes. In other applications, successful complementation of a missing enzyme activity in E. coli, as well as directed evolution studies and metabolic engineering, often require a much lower level of protein expression. In this report we describe the construction of a number of new pHOST vectors that can be screened for both low- and high-level expression. We isolated a mutant vector for MBP fusions that exhibited a more optimal level of expression for complementation of aerobic respiration in hemA(-) E. coli, our functional assay for the alternative oxidase. We then demonstrated the use of our system to rapidly screen for both optimal functional expression and optimal overexpression of the alternative oxidase as well as two other members of a family of membrane-bound diiron carboxylate proteins, the plastid terminal oxidase and 5-demethoxyquinone hydroxylase.  相似文献   

18.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

19.
The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was further subcloned into a Bacillus cloning vector, pTB523, to generate shuttle plasmid pMLG1, which is able to replicate in both E. coli and Bacillus subtilis. Expression of the thermostable glucose isomerase gene in both species was constitutive, whereas synthesis of the enzyme in C. thermosulfurogenes was inducible by D-xylose. B. subtilis and E. coli produced higher levels of thermostable glucose isomerase (1.54 and 0.46 U/mg of protein, respectively) than did C. thermosulfurogenes (0.29 U/mg of protein). The glucose isomerases synthesized in E. coli and B. subtilis were purified to homogeneity and displayed properties (subunit Mr, 50,000; tetrameric molecular structure; thermostability; metal ion requirement; and apparent temperature and pH optima) identical to those of the native enzyme purified from C. thermosulfurogenes. Simple heat treatment of crude extracts from E. coli and B. subtilis cells carrying the recombinant plasmid at 85 degrees C for 15 min generated 80% pure glucose isomerase. The maximum conversion yield of glucose (35%, wt/wt) to fructose with the thermostable glucose isomerase (10.8 U/g of dry substrate) was 52% at pH 7.0 and 70 degrees C.  相似文献   

20.
The membrane permeation in vivo of therapeutic proteins may be enhanced by conjugation of the protein to cationic import peptides, such as the tat protein of the human immune deficiency virus. The organ uptake, expressed as a percent of injected dose (ID) per gram of tissue, is a function of both membrane permeability and the area under the plasma concentration curve (AUC), which is a function of the plasma pharmacokinetics. The purpose of the present studies was to examine the effect of the tat peptide on the plasma AUC of a model exogenous protein, streptavidin, and to examine the extent to which changes in the plasma AUC influence organ uptake (%ID/g) of the protein. The cationic portion of the tat protein is comprised of a lysine/arginine-rich sequence, designated tat48-58. A biotin analogue of this cationic peptide, tat-biotin, was radioiodinated and injected intravenously into rats with or without conjugation to streptavidin. The unconjugated tat-biotin peptide was nearly instantaneously cleared from plasma by all tissues with a very high systemic clearance of 29 +/- 4 mL/min/kg and a high systemic volume of distribution of 4160 m+/- 450 mL/kg. The plasma clearance of the tat-biotin/streptavidin conjugate, 1.37 +/- 0.01 mL/min/kg, was reduced relative to the clearance of unconjugated tat peptide, but was higher than the plasma clearance of the unconjugated streptavidin, 0.058 +/- 0.005 mL/min/kg. Conjugation of cationic import peptides such as tat48-58 to higher molecular weight proteins results in a marked increase in the rate of removal of the protein from the circulation, which is reflected in the reduced plasma AUC. In summary, tat conjugation of a protein has opposing effects on membrane permeation and the plasma AUC. Therefore, the organ %ID/g is not increased in proportion to the increase in membrane permeation caused by tat conjugation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号