首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

2.
A. Schikora  W. Schmidt 《Protoplasma》2001,218(1-2):67-75
Summary Root hair formation and the development of transfer cells in the rhizodermis was investigated in various existing auxinrelated mutants ofArabidopsis thaliana and in the tomato mutantdiageotropica. Wild-type Arabidopsis plants showed increased formation of root hairs when the seedlings were cultivated in Fe- or P-free medium. These extranumerary hairs were located in normal positions and in positions normally occupied by nonhair cells, e.g., over periclinal walls of underlying cortical cells. Defects in auxin transport or reduced auxin sensitivity inhibited the formation of root hairs in response to Fe deficiency completely but did only partly affect initiation and elongation of hairs in P-deficient roots. Application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid or the auxin analog 2,4-dichlorophenoxyacetic acid did not rescue the phenotype of the auxin-resistantaxr2 mutant under control and Fe-deficient conditions, indicating that functionalAXR2 product is required for translating the Fe deficiency signal into the formation of extra hairs. The development of extra hairs inaxr2 roots under P-replete conditions was not affected by auxin antagonists, suggesting that this process is independent of auxin signaling. In roots of tomato, growth under Fe-deficient conditions induced the formation of transfer cells in the root epidermis. Transfer cell frequency was enhanced by application of 2,4-dichlorophenoxyacetic acid but was not inhibited by the auxin transport inhibitor N-1-naphthylphthalamic acid. In thediageotropica mutant, which displays reduced sensitivity to auxin, transfer cells appeared to develop in both Fe-sufficient and Fe-deficient roots. Similar to the wild type, no reduction in transfer cell frequency was observed after application of the above auxin transport inhibitor. These data suggest that auxin has no primary function in inducing transfer cell development; the formation of transfer cells, however, appears to be affected by the hormonal balance of the plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - TIBA triiodobenzoic acid - NPA N-1-naphthylphthalamic acid - STS silver thiosulfate  相似文献   

3.
To understand the molecular mechanism of auxin action, mutants of Arabidopsis thaliana with altered responses to auxin have been identified and characterized. Here the isolation of two auxin-resistant mutants that define a new locus involved in auxin response, named AXR4, is reported. The axr4 mutations are recessive and map near the ch1 mutation on chromosome 1. Mutant plants are specifically resistant to auxin and defective in root gravitropism. Double mutants between axr4 and the recessive auxin-resistant mutants axr1-3 and aux1-7 were characterized to ascertain possible genetic interactions between the mutations. The roots of the axr4 axr1-3 double mutant plants are less sensitive to auxin, respond more slowly to gravity, and form fewer lateral roots than either parental single mutant. These results suggest that the two mutations have additive or even synergistic effects. The AXR1 and AXR4 gene products may therefore act in separate pathways of auxin response or perhaps perform partially redundant functions in a single pathway. The axr4 aux1-7 double mutant has the same sensitivity to auxin as the aux1-7 mutant but forms far fewer lateral roots than either parental single mutant. The aux1-7 mutation thus appears to be epistatic to axr4 with respect to auxin-resistant root elongation, whereas in lateral root formation, the effects of the two mutations are additive. The complexity of the genetic interactions indicated by these results may reflect differences in the mechanism of auxin action during root elongation and the formation of lateral roots. The AXR4 gene product, along with those of the AXR1 and AUX1 genes, is important for normal auxin sensitivity, gravitropic response in roots and lateral root formation.  相似文献   

4.
5.
One rape (Brassica napus cv. Wesroona) plant and four cotton (Gossypium hirsutum cv. Sicot 3) plants were grown in plastic cells containing soil labelled with 407 kBq of33P g−1 soil. After 5–8 days of growth, the33P depletion zones of all plants were autoradiographed and33P uptake by plants was measured. The autoradiographs were scanned with a microdensitometer and the optical densities at several places within the33P depletion zones of roots were obtained. The volume of soil explored by root hairs was estimated from measurements of root diameters and lengths of roots and root hairs. About half of the total33P depleted by cotion roots came from outside the root hair cylinder whereas most of33P taken up by rape was from within the root hair cylinder. Plants grown in a macrostructured soil may have roots growing in voids, within aggregates or on the surfaces of aggregates. The results of this study demonstrate that root hairs have a strong influence on the accessibility of phosphorus to roots in such a soil, and thus on the phosphorus nutrition of plants.  相似文献   

6.
Arabidopsis thaliana, axr4 , was restored by the addition of 30–300 nM 1-naphthaleneacetic acid (NAA) to the growth medium. Neither indole-3-acetic acid (IAA) nor 2,4-dichlorophenoxyacetic acid (2,4-D) showed such an effect. Growth of axr4 roots was resistant to IAA and 2,4-D, but not at all to NAA. The differential effects of the three auxins suggest that the defects of axr4 result from a lower auxin influx into its cells. The partially agravitropic growth habit of axr1 roots, which was less severe than that of axr4 roots, was only slightly affected by the three auxins in the growth medium at concentrations up to 300 nM; growth of axr1 roots was resistant to all three of the auxins. These results suggest that the lesion of axr1 mutants is different from that of axr4. Received 9 June 1999/ Accepted in revised form 16 August 1999  相似文献   

7.
We have examined the response of the hormone-resistant mutants axr1 and axr2 of Arabidopsis thaliana to inoculation by Agrobacterium tumefaciens and Agrobacterium rhizogenes. Our results indicate that recessive mutations in the axr1 gene affect the frequency of tumor formation after inoculation with either Agrobacterium strain. In addition, tumors produced on axr1 plants were smaller than those growing on wild-type plants. These results indicate that the product of the AXR1 gene is important for both crown gall and hairy root tumor formation. In contrast, the dominant axr2 mutation has a more severe effect on the development of crown gall tumors than on hairy root tumors. Crown gall tumors produced on axr2 plants had a different morphology than wild-type tumors and did not grow when they were removed from the explant. In contrast, a large number of hairy root tumors were produced on wild-type and axr2 plants, and both types of tumors grew when they were removed from the explant. Like the roots of axr2 plants, roots produced on axr2 explants lacked root hairs.  相似文献   

8.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

9.
The ultrastructure of the flagellar apparatus ofMesostigma viride Lauterborn (Prasinophyceae) has been studied in detail with particular reference to absolute configurations, numbering of basal bodies, basal body triplets and flagellar roots. The two basal bodies are interconnected by three connecting fibers (one distal fiber = synistosome, and two proximal fibers). The flagellar apparatus shows 180° rotational symmetry; four microtubular flagellar roots and two system II fibers are present. The microtubular roots represent a 4-6-4-6-system. The left roots (1s, 2s) consist of 4 microtubules, each with the usual 3 over 1 root tubule pattern. Each right root (1d, 2d) is proximally associated with a small, but typical multi-layered structure (MLS). The latter displays several layers corresponding to the S1 (the spline microtubules: 5–7), and presumably the S2—S4 (the lamellate layers) of the MLS of theCharophyceae. At its proximal origin (near the basal bodies) each right root originates with only two microtubules, the other spline microtubules being added more distally. The structural and positional information obtained in this study strongly suggest that one of the right roots (1d) ofMesostigma is homologous to the MLS-root of theCharophyceae and sperm cells of archegoniate land plants. Thus the typical cruciate flagellar root system of the green algae and the unilateral flagellar root system of theCharophyceae and archegoniates share a common ancestry. Some functional and phylogenetic aspects of MLS-roots are discussed.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

10.
Cruciferous hairy roots are often used for improving drought adaptability, peroxidase production, andin vitro subculturing ofPlasmodiophora brassicae. For metabolic engineering,Agrobacterium tumefaciens-mediated systems have previously been developed for hairy root production in other plant species. Here, we used therolABC gene binary construct inA. tumefaciens strain GV3101 to establish cultures of Chinese cabbage hairy roots. On both solid and liquid media, therolABC hairy root lines exhibited a wild-type hairy root syndrome in terms of their growth and morphology. This demonstrates that those three genes are sufficient to induce high-quality hairy roots in Chinese cabbage. Such a system could be useful for the stable production of secondary metabolites in that species.  相似文献   

11.
Summary The characterization of mutants that are resistant to the herbicide chlorate has greatly increased our understanding of the structure and function of the genes required for the assimilation of nitrate. Hundreds of chlorate-resistant mutants have been identified in plants, and almost all have been found to be defective in nitrate reduction due to mutations in either nitrate reductase (NR) structural genes or genes required for the synthesis of the NR cofactor molybdenum-pterin (MoCo). The chlorate-resistant mutant ofArabidopsis thaliana, ch12, is also impaired in nitrate reduction, but the defect responsible for this phenotype has yet to be explained.chl2 plants have low levels of NR activity, yet the map position of thechl2 mutation is clearly distinct from that of the two NR structural genes that have been identified inArabidopsis. In addition,chl2 plants are not thought to be defective in MoCo, as they have near wild-type levels of xanthine dehydrogenase activity, which has been used as a measure of MoCo in other organisms. These results suggest thatchl2 may be a NR regulatory mutant. We have examinedchl2 plants and have found that they have as much NR (NIA2) mRNA as wild type a variable but often reduced level of NR protein, and one-eighth the NR activity of wild-type plants. It is difficult to explain these results by a simple regulatory model; therefore, we reexamined the MoCo levels inchl2 plants using a sensitive, specific assay for MoCo: complementation ofNeurospora MoCo mutant extracts. We found thatchl2 has low levels of MoCo — about one-eighth the wild-type level and less than the level in anotherArabidopsis MoCo mutantchl6 (B73). To confirm this result we developed a new diagnostic assay for MoCo mutants, growth inhibition by tungstate. Bothchl2 andchl6 are sensitive to tungstate at concentrations that have no effect on wildtype plants. The tungstate sensitivity as well as the chlorate resistance, low NR activity and low MoCo levels all cosegregate, indicating that all are due to a single mutation that maps to thechl2 locus, 10 centimorgans fromerecta on chromosome 2. We also report on the isolation of a new chlorate-resistant mutant ofArabidopsis, ch17, which is a MoCo mutant with the same phenotypes aschl2 andchl6.  相似文献   

12.
A conditional negative selection marker is essential for high throughput insertional mutagenesis with any two-element transposon tagging system. Thetms2 gene encodes indoleacetic acid hydrolase (IAAH) which converts naphthaleneacetamide (NAM) to the potent auxin naphthaleneacetic acid, a phytotoxic derivative. This gene, under the control of the manopine synthase gene 2 promoter fromAgrobacterium tumefaciens and exogenously applied NAM, have been used effectively as a negative selector inAc/Ds insertional mutagenesis ofArabidopsis thaliana (Sundaresan et al., 1995). In this study we show thattms2 can also be used as a negative selector in rice. T1 transgenic seedlings expressing thistms2 gene under the control of themas2’ promoter showed significant reduction in shoot and root growth in the presence of 5–10 μM NAM under specified growth conditions compared to plants not containing this gene.  相似文献   

13.
Ren H  Gu G  Long J  Yin Q  Wu T  Song T  Zhang S  Chen Z  Dong H 《Journal of biosciences》2006,31(5):617-627
Expression of HpaGXoo, a bacterial type-III effector, in transgenic plants induces disease resistance. Resistance also can be elicited by biocontrol bacteria. In both cases, plant growth is often promoted. Here we address whether biocontrol bacteria and HpaGXoo can act together to provide better results in crop improvement. We studied effects ofPseudomonas cepacia on the rice variety R109 and the hpaGXoo-expressing rice line HER1. Compared to R109, HER1 showed increased growth, grain yield, and defense responses toward diseases and salinity stress. Colonization of roots byP. cepacia caused 20% and 13% increase, in contrast to controls, in root growth of R109 and HER1. Growth of leaves and stems also increased in R109 but that of HER 1 was inhibited. WhenP. cepacia colonization was subsequent to plant inoculation withRhizoctonia solani, a pathogen that causes sheath blight, the disease was less severe than controls in both R109 and HER1; HER1, nevertheless, was more resistant, suggesting thatP.cepacia and HpaGXoo cooperate in inducing disease resistance. Several genes that critically regulate growth and defense behaved differentially in HER1 and R109 while responding toP. cepacia. In R109 leaves, theOsARF1 gene, which regulates plant growth, was expressed in consistence with growth promotion byP. cepacia. Inversely,OsARF1 expression was coincident with inhibition in growth of HER1 leaves. In both plants, the expression ofOsEXP1, which encodes an expansin protein involved in plant growth, was concomitant with growth promotion in leaves instead of roots, in response toP. cepacia. We also studiedOsMAPK, a gene that encodes a mitogen-activated protein kinase and controls defense responses toward salinity and infection by pathogens in rice. In response toP. cepacia, an early expression ofOsMAPK was coincident with R109 resistance to the disease, while HER1 expressed the gene similarly whetherP. cepacia was present or not. Evidently,P. cepacia and GXoo-gene mediated resistance may act differently in rice growth and resistance. Whereas combinative effectsof P. cepacia and HpaGXoo in disease resistance have a great potential in agricultural use, it is interesting to study mechanisms that underlie interactions involving biocontrol bacteria, type-III effectors and pathogens. These authors contributed equally to this paper.  相似文献   

14.
Recent studies of glucose (Glc) sensing and signaling have revealed that Glc acts as a critical signaling molecule in higher plants. Several Glc sensing-defective Arabidopsis mutants have been characterized in detail, and the corresponding genes encoding Glc-signaling proteins have been isolated. However, the full complexity of Glc signaling in higher plants is not yet fully understood. Here, we report the identification and characterization of a new Glc-insensitive mutant, gaolaozhuangren2 (glz2), which was isolated from transposon mutagenesis experiments in Arabidopsis. In addition to its insensitivity to Glc, the glz2 plant exhibits several developmental defects such as short stature with reduced apical dominance, short roots, small and dark-green leaves, late flowering and female sterility. Treatment with 4% Glc blocked expression of the OE33 gene in wild-type plants, whereas expression of this gene was unchanged in the glz2 mutant plants. Taken together, our results suggest that the GLZ2 gene is required for normal glucose response and development of Arabidopsis.Mingjie Chen and Xiaoxiang Xia contributed equally to this work.  相似文献   

15.
Mature plants were regenerated via protoplasts fromAgrobacterium rhizogenes-transformed root cultures ofHyoscyamus muticus L., and chemical analyses were performed on 34 individual plants. The regenerated plants showed strong phenotypic differences from clone to clone as well as from the control plants. Polymerase chain reaction studies revealed that the plants exhibiting the strongest phenotypic alterations contained therol (A, B and C) genes, whereas the plants with fewer alterations had lost them. The plants produced hyoscyamine, scopolamine and a range of different calystegins, and considerable somaclonal variation was observed. Alkaloid production in the plants transgenic for therol genes was clearly reduced. The pattern of calystegins was similar within all the regenerated plants lackingrol genes. Among the plants withrol genes, the calystegin B1 was not detectable. It seems clear that the presence ofrol genes is detrimental to the alkaloid accumulation in the transgenic plants in contrast to hairy root cultures.Abbreviation PCR Polymerase chain reaction  相似文献   

16.
W. Zimmer  K. Roeben  H. Bothe 《Planta》1988,176(3):333-342
Experiments were performed to identify the substances that are excreted by the soil bacterium Azospirillum brasilense Sp7 and that were reported to stimulate the formation of lateral roots and of root hairs of grasses. Azospirillum forms indole-3 acetic acid (IAA) but only in the late stationary growth phase or when tryptophan is present in the medium, but not in continuous cultures or in the logarithmic growth phase of batch cultures. Formation of IAA by Azospirillum requires aerobic conditions. Nitrite can replace IAA in several phytohormone assay, and is even more active than IAA in a test with wheat root segments in which the increase of wet weight is determined. Higher amounts of nitrite are necessary for activity in other classical auxin assays. Nitrite shows 40–60% of the activity of IAA in the straight-growth test of Avena coleoptiles and in the formation of C2H4 by pea epicotyl segments. Like IAA, nitrite is inactive in promoting C2H4 formation by ripe apple tissues. Since nitrite alone can hardly exert phytohormonal effects, it is postulated that nitrite reacts with a substance in the cells and that a product formed by this reaction functions as auxin. Such a substance could be ascorbate. Exogenously added ascorbate enhances the rate of nitrite-dependent C2H4 formation by pea epicotyl sections and the nitrite-dependent increase in the wet weight of wheat root segments. Nitrite is formed by nitrate respiration of Azospirillum. The findings that nitrite can have phytohormonal effects offers an alternative explanation of the promotion of the growth of roots and the enhancement of mineral uptake of grasses by Azospirillum. Indole-acetic acid completely and nitrite partly substitute for an inoculation with Azospirillum in an assay where the increase of the dry weight of intact wheat roots is determined after an incubation for 10 d. Nitrite and IAA are, therefore, possibly the only factors causing an enhancement of the growth of roots of grasses.Abbreviations HPLC high-performance liquid chromatography - IAA indole-3-acetic acid  相似文献   

17.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

18.
19.
InMucuna pruriens var.utilis, grown with nitrate-N in a hydroponic split-root system, an Al avoidance reaction of root growth was observed, which was ascribed to local P stress in the Al containing compartment. The Al avoidance reaction was similar to the avoidance ofMucuna roots of acid subsoil in the field where roots grew preferentially in the topsoil. In the present paper the effect of different N forms (NO3 and NH4 +) on the reactions ofMucuna to Al were studied, since in acid soils N is present as a mixture of NO3 and NH4 +. No interaction between the N form and Al toxicity was found. A hydroponic split-root experiment with NH4NO3 nutrition, which is comparable to the situation in the field, showed that under these conditions Al avoidance did not occur. It is concluded that a relation between the Al avoidance reaction ofMucuna and P stress is still likely.Abbreviations Dr root diameter - Lpr total root length per plant - Lrw specific root length - NRA nitrate reductase activity - S/R shoot: root ratio  相似文献   

20.
Arabidopsis , aux1-7, axr1-3 and axr2-1, grown in a natural sandy soil, without sucrose supplementation. The three mutants showed impaired epidermal cell elongation in the hypocotyls of 15-day-old seedlings, with axr2-1 showing the most marked effects. In addition, the roots of axr2-1 elongated faster and presented a more extended meristematic zone than the other genotypes. Unchanged epidermal cell length in the differentiation zone of axr2-1 relative to the wild-type suggested enhancement of cell proliferation. These alterations may have affected the timing and site of emergence of the root hairs, starting later and further from the root tip than in the other genotypes. Similarly to the wild-type, no root hair growth was initiated in axr2-1 drought-induced short roots, although the epidermis was differentiated into trichoblasts and atrichoblasts. On rehydration of the short roots, hair formation occurred from trichoblasts prior to epidermal cell elongation. Therefore, auxin-insensitivity in the axr2-1 mutant did not result in alterations of the hair-forming process itself. The differential development of axr2-1 seedlings, relative to the other auxin-insensitive mutants, suggested that the AXR2 gene has a complex, regulatory function in multiple hormone signaling. Received 26 July 2000/ Accepted in revised form 28 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号