首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The maintenance of stem cells in defined locations is crucial for all multicellular organisms. Although intrinsic factors and signals for stem cell fate have been identified in several species, it has remained unclear how these connect to the ability to reenter the cell cycle that is one of the defining properties of stem cells. We show that local reduction of expression of the RETINOBLASTOMA-RELATED (RBR) gene in Arabidopsis roots increases the amount of stem cells without affecting cell cycle duration in mitotically active cells. Conversely, induced RBR overexpression dissipates stem cells prior to arresting other mitotic cells. Overexpression of D cyclins, KIP-related proteins, and E2F factors also affects root stem cell pool size, and genetic interactions suggest that these factors function in a canonical RBR pathway to regulate somatic stem cells. Expression analysis and genetic interactions position RBR-mediated regulation of the stem cell state downstream of the patterning gene SCARECROW.  相似文献   

3.
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior-posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK-Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells.  相似文献   

4.
Cell expansion, and its coordination with cell division, plays a critical role in the growth and development of plant organs. However, the genes controlling cell expansion during organogenesis are largely unknown. Here, we demonstrate that a novel Arabidopsis gene, ARGOS-LIKE (ARL), which has some sequence homology to the ARGOS gene, is involved in this process. Reduced expression or overexpression of ARL in Arabidopsis results in smaller or larger cotyledons and leaves as well as other lateral organs, respectively. Anatomical examination of cotyledons and leaves in ARL transgenic plants demonstrates that the alteration in size can be attributed to changes in cell size rather than cell number, indicating that ARL plays a role in cell expansion-dependent organ growth. ARL is upregulated by brassinosteroid (BR) and this induction is impaired in the BR-insensitive mutant bri1, but not in the BR-deficient mutant det2. Ectopic expression of ARL in bri1-119 partially restores cell growth in cotyledons and leaves. Our results suggest that ARL acts downstream of BRI1 and partially mediates BR-related cell expansion signals during organ growth.  相似文献   

5.
The interdependence of cell cycle control, chromatin remodeling and cell fate determination remains unclear in flowering plants. Pollen development provides an interesting model, as it comprises only two cell types produced by two sequential cell divisions. The first division separates the vegetative cell from the generative cell. The generative cell divides and produces the two sperm cells, transported to the female gametes by the pollen tube produced by the vegetative cell. We show in Arabidopsis thaliana that loss of activity of the Chromatin assembly factor 1 (CAF1) pathway causes delay and arrest of the cell cycle during pollen development. Prevention of the second pollen mitosis generates a fraction of CAF1-deficient pollen grains comprising a vegetative cell and a single sperm cell, which both express correctly cell fate markers. The single sperm is functional and fertilizes indiscriminately either female gamete. Our results thus suggest that pollen cell fate is independent from cell cycle regulation.  相似文献   

6.
Members of the YABBY gene family specify abaxial cell fate in Arabidopsis.   总被引:15,自引:0,他引:15  
Lateral organs produced by shoot apical and flower meristems exhibit a fundamental abaxial-adaxial asymmetry. We describe three members of the YABBY gene family, FILAMENTOUS FLOWER, YABBY2 and YABBY3, isolated on the basis of homology to CRABS CLAW. Each of these genes is expressed in a polar manner in all lateral organ primordia produced from the apical and flower meristems. The expression of these genes is precisely correlated with abaxial cell fate in mutants in which abaxial cell fates are found ectopically, reduced or eliminated. Ectopic expression of either FILAMENTOUS FLOWER or YABBY3 is sufficient to specify the development of ectopic abaxial tissues in lateral organs. Conversely, loss of polar expression of these two genes results in a loss of polar differentiation of tissues in lateral organs. Taken together, these observations indicate that members of this gene family are responsible for the specification of abaxial cell fate in lateral organs of Arabidopsis. Furthermore, ectopic expression studies suggest that ubiquitous abaxial cell fate and maintenance of a functional apical meristem are incompatible.  相似文献   

7.
8.
9.
 Cell division and cell differentiation are key processes in shoot development. The Arabidopsis thaliana (L.) Heynh. SCHIZOID (SHZ) gene appears to influence cell differentiation and cell division in the shoot. The shz-2 mutant is notable in that distinct phenotypes develop, depending on the environment in which the plants are grown. When shz-2 mutants are grown in petri dishes, callus develops from the petiole and hypocotyl. In contrast, when the mutants are grown on soil, shoots appear externally stunted with malformed leaves. However, detailed examination of soil-grown mutants shows that the two phenotypes are related. Soil-grown mutants form adventitious meristems, produce a large amount of vascular tissues and have aberrant cell divisions in the meristem. Cells with abnormal cell-division patterns were found in the apical and vascular meristems, suggesting SHZ influences cell division. Development of callus in petri dishes, development of adventitious meristems and aberrations in leaves on soil suggest that SHZ influences cell differentiation. The distinct, but related phenotypes on soil and in petri dishes suggests that SHZ normally functions to regulate differentiation and/or cell division in a manner that is responsive to environmental conditions. Received: 30 July 1999 / Accepted: 22 September 1999  相似文献   

10.
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.  相似文献   

11.
12.
Land plants have evolved a cuticle-bearing epidermis to protect themselves from environmental stress and pathogen attack. Despite its important role, little is known about the molecular mechanisms regulating shoot epidermal cell identity. In a recent study, we found that the Arabidopsis thaliana ATML1 gene is possibly a master regulator of shoot epidermal cell fate. We revealed that ATML1 has the ability to confer shoot epidermis-related traits to non-epidermal cells of the seedlings. These data are consistent with the previous loss-of-function mutant analyses, which implied a positive role of ATML1 in epidermal cell differentiation. Importantly, ectopic epidermal cells induced in ATML1-overexpressing lines provide a novel tool to assess the intrinsic properties of epidermal cells and to study epistatic interactions among genes involved in epidermal/mesophyll differentiation. Using this system, we obtained data revealing that ATML1 negatively influenced mesophyll cell fate. In addition, we provided a working model of how division planes in epidermal cells are determined.  相似文献   

13.
The mechanisms that regulate cell fate within the pronephros are poorly understood but are important for the subsequent development of the urogenital system and show many similarities to nephrogenesis in the definitive kidney. Dynamic expression of Notch-1, Serrate-1, and Delta-1 in the developing Xenopus pronephros suggests a role for this pathway in cell fate segregation. Misactivation of Notch signaling using conditionally active forms of either Notch-1 or RBP-J/Su(H) proteins prevented normal duct formation and the proper expression of genetic markers of duct cell differentiation. Inhibition of endogenous Notch signaling elicited the opposite effect. Taken together with the mRNA expression patterns, these data suggest that endogenous Notch signaling functions to inhibit duct differentiation in the dorsoanterior region of the anlage where cells are normally fated to form tubules. In addition, elevated Notch signaling in the pronephric anlage both perturbed the characteristic pattern of the differentiated tubule network and increased the expression of early markers of pronephric precursor cells, Pax-2 and Wilms' tumor suppressor gene (Wt-1). We propose that Notch signaling plays a previously unrecognized role in the early selection of duct and tubule cell fates as well as functioning subsequently to control tubule cell patterning and development.  相似文献   

14.
15.
16.
17.
The specification of distinct cell fates in multicellular organisms is a fundamental process in developmental biology. The Arabidopsis root epidermis, which consists of root-hair cells and non-hair cells, provides a useful model system for studying cell fate specification. In this tissue, the cell fates are determined by their relative position to the underlying cortical cells, and many genes have been identified that regulate this position-dependent cell fate specification. Recent studies using genetic, molecular, and biochemical approaches have shed new light on this process and revealed a complex network of interacting and interdependent components. In particular, a novel regulatory circuit has recently been identified, which includes a lateral inhibition pathway and a feedback loop that enables intercellular communication and ensures that two distinct cell types arise in an appropriate pattern. This regulatory circuit is also influenced by a positional signaling pathway which includes the SCRAMBLED leucine-rich repeat receptor kinase. The studies of cell fate specification in the Arabidopsis root epidermis provide new insights into the molecular strategies used to define distinct cell types in plants.  相似文献   

18.

Background  

The genetic control of floral organ specification is currently being investigated by various approaches, both experimentally and through modeling. Models and simulations have mostly involved boolean or related methods, and so far a quantitative, continuous-time approach has not been explored.  相似文献   

19.
20.
Lateral organs in plants arise from the meristem in a stereotypical pattern known as phyllotaxy. Spiral patterns result from initiation of successive organs at a fixed angle of divergence but variable patterns of physical contact. Such patterns ultimately give rise to individual leaves and flowers at positions related to each other by consecutive terms in the mathematical series first described by Leonardo Fibonacci. We demonstrate that a BELL1 related homeodomain protein in Arabidopsis, BELLRINGER, maintains the spiral phyllotactic pattern. In the absence of BELLRINGER, the regular pattern of organ initiation is disturbed and lateral organs are initiated more frequently. BELLRINGER is also required for maintenance of stem cell fate in the absence of the regulatory genes SHOOT MERISTEMLESS and ASYMMETRIC LEAVES1. We propose a model whereby BELLRINGER coordinates the maintenance of stem cells with differentiation of daughter cells in stem cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号