首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nucleotide excision repair (NER) is the most versatile and universal pathway of DNA repair that is capable of repairing virtually any damages other than a double strand break (DSB). This pathway has been shown to be inducible in several systems. However, question of a threshold and the nature of the damage that can signal induction of this pathway remain poorly understood. In this study it has been shown that prior exposure to very low doses of osmium tetroxide enhanced the survival of wild type Saccharomyces cerevisiae when the cells were challenged with UV light. Moreover, it was also found that osmium tetroxide treated rad3 mutants did not show enhanced survival indicating an involvement of nucleotide excision repair in the enhanced survival. To probe this further the actual removal of pyrimidine dimers by the treated and control cells was studied. Osmium tetroxide treated cells removed pyrimidine dimers more efficiently as compared to control cells. This was confirmed by measuring the in vitro repair synthesis in cell free extracts prepared from control and primed cells. It was found that the uptake of active 32P was significantly higher in the plasmid substrates incubated with extracts of primed cells. This induction is dependent on de novo synthesis of proteins as cycloheximide treatment abrogated this response. The nature of induced repair was found to be essentially error free. Study conclusively shows that NER is an inducible pathway in Saccharomyces cerevisiae and its induction is dependent on exposure to a threshold of a genotoxic stress.  相似文献   

2.
Coïc E  Gluck L  Fabre F 《The EMBO journal》2000,19(13):3408-3417
Recombination events between non-identical sequences most often involve heteroduplex DNA intermediates that are subjected to mismatch repair. The well-characterized long-patch mismatch repair process, controlled in eukaryotes by bacterial MutS and MutL orthologs, is the major system involved in repair of mispaired bases. Here we present evidence for an alternative short-patch mismatch repair pathway that operates on a broad spectrum of mismatches. In msh2 mutants lacking the long-patch repair system, sequence analysis of recombination tracts resulting from exchanges between similar but non-identical (homeologous) parental DNAs showed the occurrence of short-patch repair events that can involve <12 nucleotides. Such events were detected both in mitotic and in meiotic recombinants. Confirming the existence of a distinct short-patch repair activity, we found in a recombination assay involving homologous alleles that closely spaced mismatches are repaired independently with high efficiency in cells lacking MSH2 or PMS1. We show that this activity does not depend on genes required for nucleotide excision repair and thus differs from the short-patch mismatch repair described in Schizosaccharomyces pombe.  相似文献   

3.
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.  相似文献   

4.
DNA polymerase beta is one of the smallest known eukaryotic DNA polymerases. This polymerase has been very well characterized in vitro, but its functional role in vivo has yet to be determined. Using a novel competition assay in Escherichia coli, we isolated two DNA polymerase beta dominant negative mutants. When we overexpressed the dominant negative mutant proteins in Saccharomyces cerevisiae, the cells became sensitive to methyl methanesulfonate. Interestingly, overexpression of the same polymerase beta mutant proteins did not confer sensitivity to UV damage, strongly suggesting that the mutant proteins interfere with the process of base excision repair but not nucleotide excision repair in S. cerevisiae. Our data implicate a role for polymerase IV, the S. cerevisiae polymerase beta homolog, in base excision repair in S. cerevisiae.  相似文献   

5.
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human.  相似文献   

6.
DNA interstrand cross-link repair in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
DNA interstrand cross-links (ICL) present a formidable challenge to the cellular DNA repair apparatus. For Escherichia coli, a pathway which combines nucleotide excision repair (NER) and homologous recombination repair (HRR) to eliminate ICL has been characterized in detail, both genetically and biochemically. Mechanisms of ICL repair in eukaryotes have proved more difficult to define, primarily as a result of the fact that several pathways appear compete for ICL repair intermediates, and also because these competing activities are regulated in the cell cycle. The budding yeast Saccharomyces cerevisiae has proven a powerful tool for dissecting ICL repair. Important roles for NER, HRR and postreplication/translesion synthesis pathways have all been identified. Here we review, with reference to similarities and differences in higher eukaryotes, what has been discovered to date concerning ICL repair in this simple eukaryote.  相似文献   

7.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

8.
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplexes are formed at a high frequency between HIS4 genes located on homologous chromosomes. Using mutant alleles of the HIS4 gene that result in poorly repaired mismatches in heteroduplex DNA, we find that heteroduplexes often span a distance of 1.8 kb. In addition, we show that about one-third of the repair tracts initiated at well-repaired mismatches extend 900 bp.  相似文献   

9.
The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  相似文献   

10.
Evidence implying DNA polymerase beta function in excision repair.   总被引:1,自引:1,他引:0       下载免费PDF全文
Comparison was made of the ability of calf thymus DNA polymerases alpha and beta to replicate the following templates: native E. coli CR-34 DNA (T-DNA), calf thymus DNA activated by DNase I (act.DNA), BU-DNA (from E. coli CR-34 cells cultured on BUdR-containing medium) with damages resulting from incomplete excision repair, as well as thermally denatured act.DNA and BU-DNA (s.s.act.DNA and s.s.BU-DNA). 3H-TTP incorporation during extensive replication of act.DNA was similar for both enzymes, being, as expected, 40 times higher than for T-DNA. Likewise, the differences in the yield of the s.s.act.DNA or s.s.BU-DNA replication between both enzymes were negligible. In contrast, damaged native DNA was 6 - 30 times more extensively replicated by DNA polymerase beta than alpha. We propose that this is due to the greater ability of DNA polymerase beta compared with alpha to replicate single-stranded gaps, the presence of which is more likely in damaged BU-DNA than in T-DNA and act.DNA.  相似文献   

11.
The position of nucleosomes on DNA participates in gene regulation and DNA replication. Nucleosomes can be repressors by limiting access of factors to regulatory sequences, or activators by facilitating binding of factors to exposed DNA sequences on the surface of the core histones. The formation of UV induced DNA lesions, like cyclobutane pyrimidine dimers (CPDs), is modulated by DNA bending around the core histones. Since CPDs are removed by nucleotide excision repair (NER) and photolyase repair, it is of paramount importance to understand how DNA damage and repair are tempered by the position of nucleosomes. In vitro, nucleosomes inhibit NER and photolyase repair. In vivo, nucleosomes slow down NER and considerably obstruct photoreactivation of CPDs. However, over-expression of photolyase allows repair of nucleosomal DNA in a second time scale. It is proposed that the intrinsic abilities of nucleosomes to move and transiently unwrap could facilitate damage recognition and repair in nucleosomal DNA.  相似文献   

12.
In contrast to ligase-deficient (cdc9) Saccharomyces cerevisiae, which did not rejoin bleomycin-induced DNA breaks, ligase-proficient (CDC9) yeast cells eliminated approximately 90% of DNA breaks within 90 to 120 min after treatment. Experimental conditions restricted enzymatic removal of the unusual 3'-phosphoglycolate termini in DNA cleaved by bleomycin and involved doses producing equivalent numbers of DNA breaks or doses producing equivalent killing.  相似文献   

13.
Efficient repair of large DNA loops in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
Small looped mispairs are efficiently corrected by mismatch repair. The situation with larger loops is less clear. Repair activity on large loops has been reported as anywhere from very low to quite efficient. There is also uncertainty about how many loop repair activities exist and whether any are conserved. To help address these issues, we studied large loop repair in Saccharomyces cerevisiae using in vivo and in vitro assays. Transformation of heteroduplexes containing 1, 16 or 38 nt loops led to >90% repair for all three substrates. Repair of the 38 base loop occurred independently of mutations in key genes for mismatch repair (MR) and nucleotide excision repair (NER), unlike other reported loop repair functions in yeast. Correction of the 16 base loop was mostly independent of MR, indicating that large loop repair predominates for this size heterology. Similarities between mammalian and yeast large loop repair were suggested by the inhibitory effects of loop secondary structure and by the role of defined nicks on the relative proportions of loop removal and loop retention products. These observations indicate a robust large loop repair pathway in yeast, distinct from MR and NER, and conserved in mammals.  相似文献   

14.
Postreplication repair in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light (2 to 4 J/m2). Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were "chased," the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, we concluded that postreplication repair in excision-defective mutants (or leaky mutants) does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.  相似文献   

15.
16.
17.
18.
The effect of incubating T3-1 cells with phorbol 12,13-dibutyrate (PDBu) on the protein kinase C (PKC) isoform content (predominantly , and isoforms) was assessed by immunoblotting, enzyme activity assay and [3H]PDBu binding. After exposure to PDBu for 17 h the immunoreactivity detected for both PKC and PKC had disappeared from cytosol and had increased slightly in membranes. Immunoreactivity for PKC was present as two bands in cytosol; after PDBu treatment both bands decreased in intensity, the higher molecular weight band more than the lower. The lower molecular weight band corresponded with a component of constitutive PKC activity eluting from DEAE cellulose that was defined by inhibition of basal activity with GF 109203X or H7. Investigation of very short treatment times with PDBu using binding, immunoblot and activity measurements (in the presence/absence of Ca2+) indicated that translocation of PKC and was very rapid — detectable by 10 sec, maximal within minutes. Reduction of these isoforms in membranes took much longer, and was not apparent up to 150 min. The immunoblot data for PKC in cytosol showed no detectable effect of PDBu treatment on the low molecular weight band up to 150 min although it was reduced at 17 h. Translocation of the upper band was detectable at 10 sec but this band may have resulted from cross-reaction with other PKC isoforms. The constitutive activity and low molecular weight (authentic) PKC immunoreactivity were partially affected after long exposure only, suggesting an action of PDBu on PKC secondary to activation of the other PKC isoforms. An endogenous receptor agonist, luteinising hormone-releasing hormone (LHRH), was also used to assess by immunoblotting, translocation of the PKC isoforms. Although all the isoforms did translocate from cytosol to membrane fractions, they did so with distinctly different time courses: PKC moved more rapidly than PKC which appeared to translocate more quickly than PKC . After downregulation of the responsive PKC isoforms with PDBu, the remaining PKC was not translocated by LHRH. (Mol Cell Biochem 165: 65–75, 1996)  相似文献   

19.
The budding yeast Saccharomyces cerevisiae plays a central role in contributing to the understanding of one of the most important biological process, DNA repair, that maintains genuine copies of the cellular chromosomes. DNA lesions produce either spontaneously or by DNA damaging agents are efficiently repaired by one or more DNA repair proteins. While some DNA repair proteins function independently as in the case of base excision repair, others belong into three separate DNA repair pathways, nucleotide excision, mismatch, and recombinational. Of these pathways, nucleotide excision and mismatch repair show the greatest functional conservation between yeast and human cells. Because of this high degree of conservation, yeast has been regarded as one of the best model system to study DNA repair. This report therefore updates current knowledge of the major yeast DNA repair processes.  相似文献   

20.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号