首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I analyze stochastic patch occupancy models (SPOMs), which record habitat patches as empty or occupied. A problem with SPOMs has been that if the spatial structure of a heterogeneous habitat patch network is taken into account, the computational effort needed to analyze a SPOM grows as a power of 2n, where n is the number of habitat patches. I propose a computationally feasible approximation method, which approximates the behavior of a heterogeneous SPOM by an "ideal" metapopulation inhabiting a network of identical and equally connected habitat patches. The transformation to the ideal metapopulation is based on weighting the individual patch occupancies by the dynamic values of the habitat patches, which may be calculated from the deterministic mean-field approximation of the original SPOM. Conceptually, the method resembles the calculation of the effective size of a population in the context of population genetics. I demonstrate how the method may be applied to SPOMs with flexible structural assumptions and with spatially correlated and temporally varying parameter values. I apply the method to a real habitat patch network inhabited by the Glanville fritillary butterfly, illustrating that the metapopulation dynamics of this species are essentially driven by temporal variability in the environmental conditions.  相似文献   

2.
We present a formula for the mean lifetime of metapopulations in heterogeneous landscapes. This formula provides new insights into the effect of the spatial structure of habitat networks on metapopulation survival, with consequences for modeling, landscape evaluation, and metapopulation management. In the whole study, the spatially realistic metapopulation model of Frank and Wissel is taken as a basis. First, as a key result on the way toward the desired formula, it is shown that a simple nonspatial (Levins-type) model is able to reproduce the behavior of the complex spatial model considered regarding the mean lifetime, provided its parameters appropriately summarize all the relevant details of spatial heterogeneity. Second, the formula presented reveals how data from species and landscape have to be combined to estimate the survival chance of a metapopulation without having to run any simulation or to solve numerically any model equation. Third, by taking the formula as a basis, landscape measures are derived that allow dissimilar habitat networks to be evaluated, compared, and ranked in terms of their effect on metapopulation survival. Fourth, a combination of analytical, nonlinear regression as well as aggregation techniques was used to deduce the formula presented. The potential of these techniques for simplifying (meta)population models that are complex due to spatial heterogeneity is discussed.  相似文献   

3.
According to metapopulation theory, the capacity of a habitat patch network to support the persistence of a species is measured by the metapopulation capacity of the patch network. Mathematically, metapopulation capacity is given by the leading eigenvalue lambda(M) of an appropriately constructed non-negative n x n matrix M, where n is the number of habitat patches. Both habitat destruction (in the sense of destruction of entire patches) and habitat deterioration (in the sense of partial destruction of patches) lower the metapopulation capacity of the patch network. The effect of gradual habitat deterioration is given by the derivative of lambda(M) with respect to patch attributes and may be straightforwardly evaluated by sensitivity analysis. In contrast, destruction of entire patches leads to a rank modification of matrix M, the effect of which on lambda(M) may be derived from eigenvector-eigenvalue relations. Eigenvector-eigenvalue relations have previously been analyzed only for symmetric matrices, which restricts their use in biological applications. In this paper I generalize some of the previous results by deriving eigenvector-eigenvalue relations for general non-symmetric matrices. In addition to the exact eigenvector-eigenvalue relations, I also derive eigenvalue perturbation formulae for rank-one modifications. These results lead to simple and intuitive approximation formulae, which may be used e.g. to assess the contribution of particular habitat patches to the metapopulation capacity of the landscape. The mathematical results presented are not restricted to the metapopulation context, but they should find a number of useful applications in biology, engineering and other applied sciences, where the removal (or addition) of matrix rows and columns often corresponds in a natural manner to decreasing (or increasing) the degrees of freedom of the focal system.  相似文献   

4.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

5.
The present paper addresses the following typical question of metapopulation management: “What habitat distribution is optimal for metapopulation persistence if a habitat network with a given number and configuration of patches is considered?”. By utilizing a generic metapopulation model and performing a special model analysis, rules of thumb for optimum habitat distribution and a general ‘Principle of Optimality’ are derived. The whole study is based on the application of a formula for the mean lifetime of metapopulations derived in a previous study. Finally, some general conclusions are drawn concerning the potential of using PVA techniques for deriving tools for decision support for conservation management.  相似文献   

6.
《Acta Oecologica》2002,23(5):287-296
Population viability analysis (PVA) and metapopulation theory are valuable tools to model the dynamics of spatially structured populations. In this article we used a spatially realistic population dynamic model to simulate the trajectory of a Proclossiana eunomia metapopulation in a network of habitat patches located in the Belgian Ardenne. Sensitivity analysis was used to evaluate the relative influence of the different parameters on the model output. We simulated habitat loss by removing a percentage of the original habitat, proportionally in each habitat patch. Additionally, we evaluated isolation and fragmentation effects by removing and dividing habitat patches from the network, respectively. The model predicted a slow decline of the metapopulation size and occupancy. Extinction risks predicted by the model were highly sensitive to environmental stochasticity and carrying capacity. For a determined level of habitat destruction, the expected lifetime of the metapopulation was highly dependent on the spatial configuration of the landscape. Moreover, when the proportion of removed habitat is above 40% of the original habitat, the loss of whole patches invariably leads to the strongest reduction in metapopulation viability.  相似文献   

7.
Long-term persistence of species and the SLOSS problem   总被引:1,自引:0,他引:1  
The single large or several small (SLOSS) problem has been addressed in a large number of empirical and theoretical studies, but no coherent conclusion has yet been reached. Here I study the SLOSS problem in the context of metapopulation dynamics. I assume that there is a fixed total amount A(0) of habitat available, and I derive formulas for the optimal number n and area A of habitat patches, where n=A(0)/A. I consider optimality in two ways. First, I attempt to maximize the time to metapopulation extinction, which is a relevant measure for metapopulation viability for rare and threatened species. Second, I attempt to maximize the metapopulation capacity of the habitat patch network, which corresponds both with maximizing the distance to the deterministic extinction threshold and with maximizing the fraction of occupied patches. I show that in the typical case, a small number of large patches maximizes the metapopulation capacity, while an intermediate number of habitat patches maximizes the time to extinction. The main conclusion stemming from the analysis is that the optimal number of patches is largely affected by the relationship between habitat patch area and rates of immigration, emigration and local extinction. Here this relationship is summarized by a single factor zeta, termed the patch area scaling factor.  相似文献   

8.
Modelling metapopulation dynamics is a potentially very powerful tool for conservation biologists. In recent years, scientists have broadened the range of variables incorporated into metapopulation modelling from using almost exclusively habitat patch size and isolation, to the inclusion of attributes of the matrix and habitat patch quality. We investigated the influence of habitat patch and matrix characteristics on the metapopulation parameters of a highly endangered lizard species, the New Zealand endemic grand skink (Oligosoma grande) taking into account incomplete detectability. The predictive ability of the developed zxmetapopulation model was assessed through cross-validation of the data and with an independent data-set. Grand skinks occur on scattered rock-outcrops surrounded by indigenous tussock (bunch) and pasture grasslands therefore implying a metapopulation structure. We found that the type of matrix surrounding the habitat patch was equally as important as the size of habitat patch for estimating occupancy, colonisation and extinction probabilities. Additionally, the type of matrix was more important than the physical distance between habitat patches for colonisation probabilities. Detection probability differed between habitat patches in the two matrix types and between habitat patches with different attributes such as habitat patch composition and abundance of vegetation on the outcrop. The developed metapopulation models can now be used for management decisions on area protection, monitoring, and the selection of translocation sites for the grand skink. Our study showed that it is important to incorporate not only habitat patch size and distance between habitat patches, but also those matrix type and habitat patch attributes which are vital in the ecology of the target species.  相似文献   

9.
Metapopulation theory for fragmented landscapes   总被引:18,自引:0,他引:18  
We review recent developments in spatially realistic metapopulation theory, which leads to quantitative models of the dynamics of species inhabiting highly fragmented landscapes. Our emphasis is in stochastic patch occupancy models, which describe the presence or absence of the focal species in habitat patches. We discuss a number of ecologically important quantities that can be derived from the full stochastic models and their deterministic approximations, with a particular aim of characterizing the respective roles of the structure of the landscape and the properties of the species. These quantities include the threshold condition for persistence, the contributions that individual habitat patches make to metapopulation dynamics and persistence, the time to metapopulation extinction, and the effective size of a metapopulation living in a heterogeneous patch network.  相似文献   

10.
In order to predict species response to climate and land-use change, numerically fast and easily applicable assessment tools for species survival are required. We present a set of formulae to calculate the mean lifetime of a metapopulation in a spatially heterogeneous and dynamic landscape subject to habitat patch diminution, loss and/or spatial shift of the habitat network. The formulae require as inputs (i) information about the number, location and size of the habitat patches for several time steps to quantify landscape dynamics in terms of patch destruction, diminution or shifting rates and (ii) data on species traits such as their vulnerability to environmental variation and their dispersal ability to quantify local colonisation and extinction rates. We validate the formulae with a spatially explicit simulation. The analysis is complemented by a protocol for the easy use of the approach and practical application examples. A software implementation is available on request from the authors.  相似文献   

11.
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5–10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.  相似文献   

12.
We model metapopulation dynamics in finite networks of discrete habitat patches with given areas and spatial locations. We define and analyze two simple and ecologically intuitive measures of the capacity of the habitat patch network to support a viable metapopulation. Metapopulation persistence capacity lambda(M) defines the threshold condition for long-term metapopulation persistence as lambda(M)>delta, where delta is defined by the extinction and colonization rate parameters of the focal species. Metapopulation invasion capacity lambda(I) sets the condition for successful invasion of an empty network from one small local population as lambda(I)>delta. The metapopulation capacities lambda(M) and lambda(I) are defined as the leading eigenvalue or a comparable quantity of an appropriate "landscape" matrix. Based on these definitions, we present a classification of a very general class of deterministic, continuous-time and discrete-time metapopulation models. Two specific models are analyzed in greater detail: a spatially realistic version of the continuous-time Levins model and the discrete-time incidence function model with propagule size-dependent colonization rate and a rescue effect. In both models we assume that the extinction rate increases with decreasing patch area and that the colonization rate increases with patch connectivity. In the spatially realistic Levins model, the two types of metapopulation capacities coincide, whereas the incidence function model possesses a strong Allee effect characterized by lambda(I)=0. For these two models, we show that the metapopulation capacities can be considered as simple sums of contributions from individual habitat patches, given by the elements of the leading eigenvector or comparable quantities. We may therefore assess the significance of particular habitat patches, including new patches that might be added to the network, for the metapopulation capacities of the network as a whole. We derive useful approximations for both the threshold conditions and the equilibrium states in the two models. The metapopulation capacities and the measures of the dynamic significance of particular patches can be calculated for real patch networks for applications in metapopulation ecology, landscape ecology, and conservation biology.  相似文献   

13.
Aim The objective of conservation planning is often to prioritize patches based on their estimated contribution to metapopulation or metacommunity viability. The contribution that an individual patch makes will depend on its intrinsic characteristics, such as habitat quality, as well as its location relative to other patches, its connectivity. Here we systematically evaluate five patch value metrics to determine the importance of including an estimate of habitat quality into the metrics. Location We tested the metrics in landscapes designed to represent different degrees of variability in patch quality and different levels of patch aggregation. Methods In each landscape, we simulated population dynamics using a spatially explicit, continuous time metapopulation model linked to within patch logistic growth models. We tested five metrics that are used to estimate the contribution that a patch makes to metapopulation viability: two versions of the probability of connectivity index, two versions of patch centrality (a graph theory metric) and the metapopulation capacity metric. Results All metrics performed best in environments where patch quality was very variable and high quality patches were aggregated. Metrics that incorporated some measure of patch quality did better in all environments, but did particularly well in environments with high variance of patch quality and spatial aggregation of good quality patches. Main conclusions Including an estimate of patch quality significantly increased the ability of a given connectivity metric to rank correctly habitat patches according to their contribution to metapopulation viability. Incorporating patch quality is particularly important in landscapes where habitat quality is highly variable and good quality patches are spatially aggregated. However, caution should be used when applying patch metrics to homogeneous landscapes, even if good estimates of patch quality are available. Our results demonstrate that landscape structure and the degree of variability in patch quality need to be assessed prior to selecting a suitable method for estimating patch value.  相似文献   

14.
A major conclusion of studying metapopulation biology is that species conservation should favor regional rather than local population persistence. Regional persistence is tightly linked to size, spatial configuration and quality of habitat patches. Hence it is important for the management of endangered species that priority patches can be identified. We developed a predictive model of patch occupancy by capercaillie, a threatened grouse species, based on a single snapshot of data. We used logistic regression to predict patch occupancy as a function of patch size, isolation, connectivity, relative altitude, and biogeographical area. The probability of a patch being occupied increased with patch size and increasing altitude, and decreased with increasing distance to the next occupied patch. Patch size was the most important predictor although occupied patches varied considerably in size. Our model only uses data on the number, size and spatial configuration of habitat patches. It is a useful tool to designate priority areas for conservation, i.e. large core patches with high resilience in habitat quality, smaller island‐patches that still have high probability of being inhabited or becoming recolonised, and patches functioning as “stepping stones”. If capercaillie is to be preserved, habitat suitability needs to be maintained in a functional network of patches that account for size and inter‐patch distance thresholds as found in this study. We suggest that similar area‐isolation relationships are valid for almost any region within the distribution range of capercaillie. The thresholds for occupancy are however likely to depend on characteristics of the respective landscape. The outcome of our study emphasises the need for future investigations that explore the relationship between patch occupancy, matrix quality and its resistance to dispersing individuals.  相似文献   

15.
Abstract Integration of habitat heterogeneity into spatially realistic metapopulation approaches reveals the potential for key cross-scale interactions. Broad-scale environmental gradients and land-use practices can create autocorrelation of habitat quality of suitable patches at intermediate spatial scales. Patch occupancy then depends not only on habitat quality at the patch scale but also on feedbacks from surrounding neighborhoods of autocorrelated patches. Metapopulation dynamics emerge from how demographic and dispersal processes interact with relevant habitat heterogeneity. We provide an empirical example from a metapopulation of round-tailed muskrats (Neofiber alleni) in which habitat quality of suitable patches was spatially autocorrelated most strongly within 1,000 m, which was within the expected dispersal range of the species. After controlling for factors typically considered in metapopulation studies—patch size, local patch quality, patch connectivity—we use a cross-variogram analysis to demonstrate that patch occupancy by muskrats was correlated with habitat quality across scales ≤1,171 m. We also discuss general consequences of spatial heterogeneity of habitat quality for metapopulations related to potential cross-scale interactions. We focus on spatially correlated extinctions and metapopulation persistence, hierarchical scaling of source–sink dynamics, and dispersal decisions by individuals in relation to information constraints.  相似文献   

16.
Transient time in population dynamics refers to the time it takes for a population to return to population-dynamic equilibrium (or close to it) following a perturbation in the environment or in population size. Depending on the direction of the perturbation, transient time may either denote the time until extinction (or until the population has decreased to a lower equilibrium level), or the recovery time needed to reach a higher equilibrium level. In the metapopulation context, the length of the transient time is set by the interplay between population dynamics and landscape structure. Assuming a spatially realistic metapopulation model, we show that transient time is a product of four factors: the strength of the perturbation, the ratio between the metapopulation capacity of the landscape and a threshold value determined by the properties of the species, and the characteristic turnover rate of the species, adjusted by a factor depending on the structure of the habitat patch network. Transient time is longest following a large perturbation, for a species which is close to the threshold for persistence, for a species with slow turnover, and in a habitat patch network consisting of only a few dynamically important patches. We demonstrate that the essential behaviour of the n-dimensional spatially realistic Levins model is captured by the one-dimensional Levins model with appropriate parameter transformations.  相似文献   

17.
This article addresses an important aspect of the analysis of metapopulation persistence. It highlights some consequences of ignoring and including stochasticity in the sequence of extinction and colonization events. The results are based on a comparative analysis of the outcomes of two (one deterministic, one stochastic) spatially realistic metapopulation models and a search for common effects and differences. One key result of the article is that, under certain conditions, there are extra effects of the landscape structure (number and configuration of patches, patch size distribution) on metapopulation persistence if stochasticity is included. In these cases, ignoring or including stochasticity can change conclusions about the persistence status but also ranking orders, relative results, and qualitative trends. A list of conditions is provided under which including stochasticity is vital to prevent counterproductive conclusions about metapopulation persistence. The results of the overall study are condensed in five lessons about the effect of stochasticity. A number of implications for ecological theory and conservation management are discussed. The study demonstrates the potential of three recently published approximation formulas (metapopulation capacity lambdaM, mean lifetime Tm, and effective number of patches N) to serve as tools for ecological analysis and thinking.  相似文献   

18.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

19.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

20.
Long-term dynamics in a metapopulation of the American pika   总被引:11,自引:0,他引:11  
A 20-yr study of a metapopulation of the American pika revealed a regional decline in occupancy in one part of a large network of habitat patches. We analyze the possible causes of this decline using a spatially realistic metapopulation model, the incidence function model. The pika metapopulation is the best-known mammalian example of a classical metapopulation with significant population turnover, and it satisfies closely the assumptions of the incidence function model, which was parameterized with data on patch occupancy. The model-predicted incidences of patch occupancy are consistent with observed incidences, and the model predicts well the observed turnover rate between four metapopulation censuses. According to model predictions, the part of the metapopulation where the decline has been observed is relatively unstable and prone to large oscillations in patch occupancy, whereas the other part of the metapopulation is predicted to be persistent. These results demonstrate how extinction-colonization dynamics may produce spatially correlated patterns of patch occupancy without any spatially correlated processes in local dynamics or extinction rate. The unstable part of the metapopulation gives an empirical example of multiple quasi equilibria in metapopulation dynamics. Phenomena similar to those observed here may cause fluctuations in species' range limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号